

Air Resources Board

Matthew Rodriquez
Secretary for
Environmental Protection

Mary D. Nichols, Chairman 1001 I Street • P.O. Box 2815 Sacramento, California 95812 • www.arb.ca.gov

Edmund G. Brown Jr. Governor

April 20, 2015

Mr. Ken Alex, Director Office of Planning and Research Office of Governor Edmund G. Brown, Jr. 1400 10th Street Sacramento, California 95814

Dear Mr. Alex:

The Jobs and Economic Improvement through Environmental Leadership Act of 2011 (AB 900) authorizes the Governor to certify a leadership project for streamlining under the California Environmental Quality Act (CEQA) if the project meets certain conditions. One condition for certification is that the project does not result in any net additional emissions of greenhouse gases (GHG), including GHG emissions from employee transportation, as determined by the Air Resources Board (ARB).

On February 19, 2015, Golden State Warriors Arena LLC (GSW) submitted an application to ARB with its proposed GHG methodologies and documentation for the proposed Event Center and Mixed-Use Development at Mission Bay Blocks 29-32 (Event Center), as required by the Governor's Guidelines for applications for CEQA streamlining. An addendum to the application with additional information was submitted on March 16, 2015. ARB staff conducted a technical evaluation of the GHG emission estimates and voluntary mitigation submitted by GSW and confirmed the documentation provides an adequate technical basis for estimating total GHG emissions and voluntary mitigation for the Event Center. Based on the documentation submitted by GSW, ARB has determined the Event Center does not result in any net additional GHG emissions for purposes of certification under AB 900.

ARB staff's evaluation and an Executive Order noting ARB's determination are enclosed.

The energy challenge facing California is real. Every Californian needs to take immediate action to reduce energy consumption.

For a list of simple ways you can reduce demand and cut your energy costs, see our website: https://www.arb.ca.gov.

California Environmental Protection Agency

Printed on Recycled Pape

Mr. Ken Alex, Director April 20, 2015 Page 2

If you have any questions regarding the evaluation or determination, please contact Ms. Karen Magliano, Chief, Air Quality Planning and Science Division, at (916) 322-7137 or by email at karen.magliano@arb.ca.gov.

Sincerely,

Richard W. Corey Executive Officer

Enclosures

Ms. Catherine Reilly
 Office of Community Investment and Infrastructure
 1 South Van Ness Avenue, 5th Floor
 San Francisco, California 94103

Ms. Karen Magliano, Chief Air Quality Planning and Science Division

State of California AIR RESOURCES BOARD

EXECUTIVE ORDER G-15-022

Relating to Determination of No Net Additional Greenhouse Gas Emissions Under Public Resources Code section 21183, subdivision (c)

Golden State Warriors

Event Center and Mixed-Use Development at Mission Bay Blocks 29-32

WHEREAS, in September 2011, Governor Brown signed the "Jobs and Economic Improvement through Environmental Leadership Act" (AB 900);

WHEREAS, under AB 900, the Governor may certify certain projects for judicial streamlining under the California Environmental Quality Act (CEQA) if certain conditions are met;

WHEREAS, under California Public Resources Code section 21183, subdivision (c), one condition for the Governor's certification is that the project does not result in any net additional emission of greenhouse gases (GHG), including GHG emissions from construction and operation of the project, as determined by the California Air Resources Board (ARB);

WHEREAS, the Governor's Guidelines for applications for the CEQA streamlining require for purposes of ARB's determination on GHGs that an applicant submit electronically to ARB a proposed methodology for quantifying the project's net additional GHGs and documentation that the project does not result in any net additional GHGs;

WHEREAS, according to the Governor's Guidelines, Golden State Warriors Arena LLC (GSW), an affiliate of Golden State Warriors, LLC, which owns and operates the Golden State Warriors National Basketball Association team, submitted its initial proposed GHG State Warriors National Basketball Association team, submitted its initial proposed GHG methodologies and documentation to ARB on the proposed Event Center and Mixed-Use Development at Mission Bay Blocks 29-32 (Event Center) on February 19, 2015, with an addendum submitted on March 16, 2015, when the application was deemed complete;

WHEREAS, the documentation submitted for the Event Center estimates the project's net additional GHG emissions as follows:

- Construction GHG Emissions: 10,066 metric tons CO2e emissions for project construction generated by the equipment used for construction activities and from both onsite and off-site motor vehicles;
- Operation-Related GHG Emissions: Additional 4,099 metric tons CO2e emissions during the first year of project operation and declining additional emissions in future years over the lifetime of the project.

WHEREAS, in documentation submitted the project applicant proposes to secure 10,066 metric tons of one-time carbon credits to offset emissions generated during construction and to secure carbon credits on an on-going basis to offset the net increase in emissions generated during project operation through a voluntary carbon credits market from

Executive Order G-15-022

-2-

a voluntary credit generator to fully offset these identified construction and operations GHG emissions;

WHEREAS, ARB staff reviewed and evaluated the submittal in consultation with the lead agency; prior to finalizing its determination, staff shared a draft of its evaluation with the lead agency;

WHEREAS, ARB staff conducted a technical evaluation of the GHG emission estimates and voluntary mitigation included in the documentation submitted by GSW and confirmed the documentation provides an adequate technical basis for estimating total GHG emissions and voluntary mitigation for the Event Center;

WHEREAS, ARB's review and determination on the project's GHG emissions is for the limited purpose of the Governor's findings and certification under the AB 900 and should not be construed as meeting any other requirement under State or federal law, including CEQA; the lead agency remains responsible for full compliance with CEQA for this project;

NOW, THEREFORE, based on ARB Staff's Evaluation (Attachment 1) of the application submitted by GSW (Attachments 2 and 3), I determine that the Golden State Warriors Event Center and Mixed-Use Development at Mission Bay Blocks 29-32 does not result in any net additional GHG emissions pursuant to Public Resources Code section 21183, subdivision (c) for purposes of certification under AB 900.

Executed this 311 day of April 2015, at Sacramento, California.

Richard W. Corey of Executive Officer

Attachments

1. ARB Staff Evaluation of AB 900 Application

2. GSW AB 900 Application

3. Addendum to GSW AB 900 Application

ATTACHMENT 1

ARB Staff Evaluation of AB 900 Application

ARB Staff Evaluation for Golden State Warriors Event Center and Mixed-Use Development at Mission Bay Blocks 29-32

1. Introduction

GSW Arena LLC ("Applicant"), an affiliate of the Golden State Warriors (GSW), LLC, which owns and operates the National Basketball Association (NBA) team, proposes to construct a multi-purpose event center, along with office and retail space and parking land uses on an 11-acre site (Blocks 29-32) within the Mission Bay South Redevelopment Plan Area of the City and County of San Francisco, California. The project would involve relocating the GSW NBA games and associated operations to the proposed Mission Bay Arena and associated office space from the existing Oracle Arena and team headquarters in Oakland, California. The Applicant is seeking certification for the project under Assembly Bill 900 (AB 900), the Jobs and Economic Improvement through Environmental Leadership Act.

AB 900 provides for streamlined judicial review under the California Environmental Quality Act (CEQA) if certain conditions are met. One condition is that the project does not result in any net additional greenhouse gas (GHG) emissions as determined by the Air Resources Board (ARB). As part of the determination, ARB staff prepared this technical evaluation of the GHG emissions from the project.

This evaluation includes an executive summary, an overview of the AB 900 zero net additional GHG emissions requirement, a brief description of the proposed project, a technical review and assessment of GHG emissions information provided by the Applicant in their AB 900 application, and ARB staff's recommendation on the AB 900 GHG emissions determination for the proposed project.

II. Executive Summary

ARB staff reviewed the projected GHG emissions provided by the Applicant and independently confirmed GHG emission factors used to estimate construction and operational emissions. Staff concurs with the GHG quantification in the Applicant's proposal (Attachments 2 and 3).

Based on an evaluation of the documentation provided by the Applicant, ARB staff concludes that, with voluntary GHG offset commitments documented in Attachment 3, the project would not result in any net additional GHG emissions relative to the baseline

as summarized in Tables 1 and 2 below. ARB staff confirms that the proposed project would meet the GHG emissions requirements of the "Jobs and Economic Improvement through Environmental Leadership Act." (Pub. Resources Code, §21178 et seq.) A detailed description of emissions by source is reviewed in subsequent sections.

Table 1 shows project construction-generated GHG emissions. Project construction is expected to be completed in approximately 24 months, with construction beginning as early as 2015. The Applicant has committed to offset the GHG emissions generated during project construction no later than six months after the issuance of a Temporary Certificate of Occupancy for the project. The Applicant will enter into a binding and enforceable agreement with the lead agency (the City and County of San Francisco's Office of Community Investment and Infrastructure [OCII]) to offset all GHG emissions associated with project construction and will purchase any necessary offsets from a qualified GHG emissions broker.

Table 1: Project Construction-Generated GHG Emissions¹

	GHG I	Emissions (MT CO₂e/y	ear)
Emission Source	Year 1 (2015-16)	Year 2 (2016-17)	Total
Off-road equipment	3,997	1,358	5,355
Construction trips	2,355	2,355	4,711
Total	6.352	3,714	10,066
GHG Offsets Required			-10,066

GHG = greenhouse gas; MT CO2e = Metric tons carbon dioxide equivalent

Source: GSW 2015; Exhibit H, pg. 4

The applicant has committed to purchase GHG offsets for construction-related GHG emissions no later than six months after issuance of a Temporary Certificate of Occupancy. Procurement and retirement of verifiable, permanent GHG offsets will be a condition of project approval enforceable by the project's lead agency.

Table 2 summarizes the net increase in project operation-related GHG emissions through the useful life of the project, which the Applicant has defined as 30 years. In the absence of any formal plans for redevelopment of the existing Oracle Arena, ARB assumed Oracle Arena remains as the reference point for the purpose of defining a baseline. The Applicant has committed to execute a contract to offset the net increase in GHG emissions generated during project operation no later than six months after the arena component of the project is 90 percent leased and occupied. The Applicant will enter into a binding and enforceable agreement with the project's lead agency (OCII) to offset all GHG emissions associated with project operation and will purchase any necessary offsets from a qualified GHG emissions broker.

Table 2: Comparison of Baseline and Project Operation-Related GHG Emissions

		GHG Emissions (M	IT CO₂e/year)	
Year ²	Baseline (Oracle Arena and GSW Headquarters)	Proposed Project (Mission Bay Event Center)	Difference	GHG Offsets Required ³
2017	15,034	19,133	4,099	-4,099
2018	14,780	18,813	4,032	-4,032
2019	14,527	18,493	3,966	-3,966
2020	14,253	18,139	3,886	-3,886
2021	14,049	17,854	3,805	-3,805
2022	13,815	17,529	3,714	-3,714
2022	13,553	17,163	3,611	-3,611
2023	13,348	16,879	3,530	-3,530
2025	13,086	16,513	3,427	-3,427
2025	12,881	16,228	3,347	-3,347
2027	12,677	15,944	3,267	-3,267
2028	12,502	15,700	3,198	-3,198
2029	12,356	15,497	3,140	-3,140
2029	12,210	15,293	3,083	-3,083
2030	12,093	15,131	3,037	-3,037
2032	12,006	15,009	3,003	-3,003
2032	11,918	14,887	2,968	-2,968
2033	11,860	14,806	2,946	-2,946
2034 2035 ⁴	11,802	14,724	2,923	-2,923

GHG = greenhouse gas; MT CO₂e = Metric tons carbon dioxide equivalent

Totals may not sum exactly due to rounding.

Source: GSW 2015; Exhibit H, pg. 13 ² The applicant estimates a useful life of the project of 30 years with first year of occupancy as early as

3 The applicant has committed to purchase GHG offsets for the annual net increase in operationrelated GHG emissions for the entire useful life of the project, through a binding and enforceable agreement with the lead agency. Procurement and retirement of verifiable, permanent GHG offsets will be a condition of approval enforceable by the project's lead agency.

⁴ Emissions projections for both the baseline and the proposed project are constant after 2035. The useful life of the project would end in 2047, as defined by the Applicant.

III. Overview of AB 900

AB 900 provides a streamlined judicial review for development projects if, among other conditions, the "project does not result in any net additional emission of greenhouse gases, including greenhouse gas emissions from employee transportation, as determined by the State Air Resources Board pursuant to Division 25.5 (commencing

with Section 38500) of the Health and Safety Code." (Pub. Resources Code, §21183,

The Governor's Guidelines for AB 900 applications require applicants to submit a proposed methodology for quantifying the project's GHG emissions and documentation. that the project will not result in any net additional GHG emissions. The documentation must quantify direct and indirect GHG emissions associated with the project's construction and operation, including GHG emissions from employee transportation, and the net emissions of the project after accounting for any mitigation measures. The project's net emissions, after mitigation, must be monitored and enforced consistent with Public Resources Code section 21183, subdivision (d).

The role of ARB staff in the GHG emissions determination of a proposed AB 900 project is limited to an evaluation of the quantification methods and documentation submitted by the Applicant for purposes of the Governor's certification. ARB staff evaluated the technical elements of the project application, including existing emissions in the absence of the project (i.e., baseline), input data and assumptions used for emissions and mitigation calculations, quantification methods, and an estimate of the project's net GHG emissions after any mitigation.

IV. Existing Conditions

The GSW NBA team currently hosts games at Oracle Arena in Oakland (500,000 square feet arena), where its office headquarters and support facilities (25,000 square feet) are also located. Oracle Arena also hosts non-game events such as family shows, concerts, conferences, and other events with lower attendance than NBA basketball

The proposed project site is located in the Mission Bay South Redevelopment Plan Area, which is designated as a Priority Development Area. The proposed project site is currently vacant, only occupied by paved surface parking facilities and previously disturbed land.

The Mission Bay South Redevelopment Plan Area-of which the proposed project site (Blocks 29-32) is a part-was subject to a previous programmatic environmental review under CEQA. The Mission Bay Final Subsequent Environmental Impact Report (FSEIR) was certified in 1998. Development consistent with the Redevelopment Plan is allowed on the proposed project site, including up to 1.1 million gross square feet of previously entitled commercial uses.

V. Proposed Project Description

ENVIRON International Corporation (ENVIRON), on behalf of the Applicant, prepared a GHG emissions assessment for the proposed project to demonstrate that the requirements of AB 900 can be met. A full copy of this proposal can be found in Attachment 2, Exhibits G and H.

The proposed project would result in demolition and removal of the existing paved parking lots from the site. Construction is proposed to begin in 2015 and conclude in 2017. The project could become operational as early as 2017.

This proposed facility would include a 750,000 square foot (18,064 seat) event center and practice facility, GSW headquarters/offices (25,000 square feet), parking and loading (234,411 square feet), non-GSW office space (580,000 square feet), retail uses (125,000 square feet), and open space. It was determined by the Applicant and the lead agency that the non-GSW office (580,000 square feet) and retail (125,000 square feet) uses were consistent with, and therefore covered by, the prior environmental analysis (Mission Bay FSEIR) and are already entitled for development consistent with the Mission Bay Redevelopment Plan Area. For this reason, GHG emissions that could ${}^{\backprime}$ be attributable to the previously entitled development of office and retail space are treated as part of the baseline (no project) scenario and also as part of the proposed project scenario. In other words, the GHG emissions from the non-GSW office and retail uses would be automatically offset and are not included in this evaluation.

The lead agency did not assume that the event center would fall within the scope of the vested development rights consistent with the Mission Bay Redevelopment Plan Area due to the unique nature of the arena land use type. The event center and relocation of associated GSW operations are the subject of the Supplemental environmental analysis for which the applicant is seeking AB 900 certification.

For this reason, the applicant prepared a full evaluation of the GHG emissions attributable to the proposed event center and GSW operations as relocated to Mission Bay. The applicant also assumed that 50 percent of non-basketball game events would continue to occur at Oracle Arena¹, and those emissions were included as part of the GHG emissions profile for the proposed project.

¹ Any future plans to repurpose Oracle Arena are unknown at this time. The Applicant has not, and need not attempt to speculate on the potential repurposing or demolition of Oracle Arena. It is reasonable to assume that the market for event space will continue in Oakland, and that Oracle Arena will accommodate some non-GSW events into the foreseeable future as it does today.

The Applicant is seeking Leadership in Environmental Design (LEED) Gold certification for energy efficiency for the proposed project. In addition, the co-location of the proposed Mission Bay Events Center with office and retail uses is anticipated to result in some amount of trip-internalization, which will reduce vehicle trips and vehicle miles traveled (VMT) compared to a scenario with a single land use on the site.

Structured parking for all proposed uses is proposed on site with a total of 950 vehicle parking spaces, which is approximately 320 fewer spaces than would normally be required by development code. Reduced parking is permitted due to transit service accessibility and other transportation demand management strategies proposed to be included in the project by design. Approximately 500 bike parking spaces are proposed on site, which is approximately 440 more than the minimum normally required by development code.

The entire property would be fully built out prior to occupancy. Thus, the proposed project would not result in simultaneous construction and operational GHG emissions from partial occupancy during construction.

VI. Technical Review and Assessment

The Applicant relied upon a variety of sources for activity data and emission factors to quantify GHG emissions. This ARB staff evaluation is focused on reviewing the data sources, emission factors, emission calculations, and assumptions used for the application, and determining whether these sources and assumptions are reasonable.

The Applicant relied upon the California Emissions Estimator Model (CalEEMod), a widely used emissions quantification tool developed in coordination with local air districts to quantify criteria pollutant and GHG emissions from land use development projects in California. CalEEMod uses widely accepted sources for emission estimates combined with appropriate default data that can be used if site-specific information is not available. CalEEMod is populated with data from the United States Environmental Protection Agency AP-42 emission factors, California Air Resources Board (ARB) onroad and off-road equipment emission models such as the Emission Factor 2011 model (EMFAC2011), the Off-road Emissions Inventory Program model (OFFROAD), and studies commissioned by California agencies such as the California Energy Commission (CEC) and CalRecycle. The Applicant used CalEEMod, or its underlying data, to calculate all GHG emissions, including construction, electricity, natural gas, mobile, solid waste, and water and wastewater. Stationary source emission sources were calculated manually outside the model.

VII. Project Construction Emissions

Construction-related GHG emissions are one-time direct emissions and would occur over a 24-month construction period. The Applicant estimated GHG emissions associated with project construction by using the CalEEMod tool, which applies ARB-recommended off-road and on-road emissions factors from its OFFROAD2011 and EMFAC2011 emission factor models. With some exceptions, the Applicant used CalEEMod default settings to generate construction-related GHG emissions. The Applicant estimates a total of 10,066 metric tons carbon dioxide equivalent (MT CO₂e) over the two-year project construction period, as shown in Table 1. Construction-related GHG emissions reflect the types of equipment expected and the number of hours of operation anticipated over the construction schedule. This includes heavy-duty equipment, such as refuse hauling trucks, excavators, cranes, and conventional work vehicles.

ARB staff concluded that the methodology and estimated GHG emissions provided by the Applicant for construction are appropriate.

VIII. Baseline Emissions

Operational emissions from activities at Oracle Arena and the GSW Headquarters in Oakland represent baseline conditions. The baseline includes stationary, energy consumption from electricity and natural gas, mobile, area, solid waste, water, and wastewater-related GHG emissions. The application states that GHG emissions from Oracle Arena and GSW Headquarters within the base year (2017) are estimated as $15,034\ MT\ CO_2e$. The application also provided annual GHG estimations through 2035.

ARB staff conducted an independent assessment of the Applicant's GHG emission estimations, demand factors, and assumptions used in the Applicant's baseline calculation, summarized in Table 3 below. ARB's assessment very closely matches the Applicant's annual baseline GHG estimations summarized in Table 2.

Table 3: ARB Staff's Assessment of Baseline Operational Emissions

Venue	Year		F	mission S	ource [MT	CO₂e/yea	r]¹	
Venue	, cai	Energy	Mobile	Area	Waste	Water	Stationary	Total
Oracle Arena²	2017	1,413	12,388	0.005	91	517		
GSW HQ3		258	365	0.005	2	1	none	
Sub-Total		1,671	12,753	0.010	93	518_		15,035
Jub-1 Otal	2018	1,623	12,549	0.010	93	518		14,783
	2019	1,573	12,344	0.010	93	518		14,528
	2020	1,533	12,111	0.010	93	518		14,255
	2021	1,533	11,907	0.010	93	518		14,051
	2022	1,533	11,673	0.010	93	518		13,817
	2023	1,533	11,411	0.010	93	518		13,555
	2024	1,533	11,206	0.010	93	518	1	13,350
	2025	1,533	10,944	0.010	93,	518		13,088
	2026	1,533	10,739	0.010	93.	518		12,883
	2027	1,533	10,535	0.010	93	518		12,679
l l	2028	1,533	10,360	0.010	93	518		12,504
	2029	1,533	10,214	0.010	93	518		12,358
	2030	1,533	10,068	0.010	93	518		12,212
	2031	1,533	9,951	0.010	93	518		12,095
	2032	1,533	9,864	0.010	93	518		12,008
	2033	1,533	9,776	0.010	93	- 518		11,920
	2034	1,533	9,718	0.010	93	518		11,862
1. Sec. 18 18 18	20354	1,533	9,660	0.010	93	518		11,804

GHG = greenhouse gas; MT CO2e = Metric tons carbon dioxide equivalent

Totals may not sum exactly due to rounding.

Source: GSW 2015; Exhibit H, pg. 12-13. Oracle Arena: Assumes 47 games and 42 events annually.

³ GSW Oakland Headquarters offices. ⁴ Emissions projections for both the baseline and the proposed project are constant after 2035. The useful life of the project would end in 2047, as defined by the Applicant.

Project Operational Emissions

The proposed project's operational emissions are characterized by the Mission Bay Event Center, GSW Headquarters relocated to Mission Bay, associated parking and loading area, and continued operation of Oracle Arena at 50 percent of non-NBA game events. The project includes operational GHG emissions from energy consumption (electricity, natural gas), mobile, stationary, area, solid waste, water, and wastewater sources.

ARB staff conducted an independent assessment of the proposed project's emission calculations, demand factors, and assumptions used to estimate project operation GHG emissions and arrived at virtually the same GHG quantification as provided by the applicant. ARB's assessment of the proposed projects operational emissions are summarized in Table 4 below.

Table 4: ARB Staff's Assessment of Proposed Project Operational Emissions

Venue	Year			Emission S	ource [MT	CO₂e/yea	<u> </u>	
		Energy	Mobile	Area	Waste	Water	Stationary	Total
Oracle Arena ²	2017	333	2,280	0.0023	21	122	1	
Mission Bay EC ³		748	16,741	0.014	136	23	106	
GSW HQ ⁴		74	104	0.00047	4.6	0.66	-	
Parking/Loading		446		0.0090			!	
Sub-Total		1,601	19,125	0.02577	161.60	145.66	106	21,139
	2018	1,566	18,819	0.02577	161.6	145.66	106	20,799
	2019	1,524	18,512	0.02577	161.6	145.66	106	20,449
	2020	1,489	18,162	0.02577	161.6	145.66	106	20,065
	2021	1,489	17,856	0.02577	161.6	145.66	106	19,759
	2022	1,489	17,506	0.02577 .	161.6	145.66	106	19,409
	2023	1,489	17,112	0.02577	161.6	145.66	106	19,015
i	2024	1,489	16,806	0.02577	161.6	145.66	106	18,709
	2025	1,489	16,412	0.02577	161.6	145.66	106	18,315
	2026	1,489	16,105	0.02577	161.6	145.66	106	18,008
	2027	1,489	15,799	0.02577	161.6	145.66	106	17,702
٠,	2028	1,489	15,536	0.02577	161.6	145.66	106	17,439
	2029	1,489	15,318	0.02577	161.6	145.66	106	17,221
	2030	1,489	15,099	0.02577	161.6	145.66	106	17,002
	2031	1,489	14,924	0.02577	161.6	145.66	106	16,827
	2032	1,489	14,792	0.02577	161.6	145.66	106	16,695
•	2033	1,489	14,661	0.02577	161.6	145.66	106	16,564
	2034	1,489	14,574	0.02577	161.6	145.66	106	16,477
	2035	1,489	14,486	0.02577	161.6	145.66	106	16,389

Notes:

MT CO₂e = Metric tons carbon dioxide equivalent
Totals may not sum exactly due to rounding.

Source: GSW 2015; Exhibit H, pg. 12-13.

Oracle Arena: Assumes 21 non-NBA events annually.

Notes are a secured of the secure of the project would end in 2047, as defined by the Applicant.

There were two GHG emission credits applied to the project that resulted in reduced operational emissions, discussed in the following paragraph.

Because the proposed project is seeking LEED Gold certification for energy efficiency, the project would consume less energy than a comparable code-compliant project not seeking this certification. Thus, the proposed land uses would generate lower GHG emissions due to greater building energy efficiency when compared with a similarly sized code-compliant project. In addition, because of the co-location of the Event Center with office and retail land uses, it is reasonable to assume that some amount of trip internalization and reduced vehicle trips would occur. Reasonable GHG emission credits due to trip linking were also applied to the project that reduced mobile-source emissions compared to a project without the proposed mix of land uses.

Table 5 below summarizes ARB staff's independent assessment of the comparison between baseline and the proposed project's GHG emissions after applying the emissions credits for energy efficiency and trip linking.

Table 5: Summary of ARB Staff's Assessment of Baseline and Project Operational Emissions

	Annua	I Operationa	l Emissions	[MT CO₂e/yea	ne		
		Pro	Project Operational Emissions				
	Oracle Arena	1		dits	Total		
Year	and GSW HQ (Baseline)	Proposed Project	Energy Eff.	Trip Link			
2017	15,035	21,139	-647	-1,362	19,131		
2018	14,783	20,799	-639	-1,340	18,819		
2019	14,528	20,449	-632	-1,318	18,499		
2019	14,255	20,065	-627	-1,293	18,145		
2020	14,051	19,759	-627	-1,271	17,861		
2021	13,817	19,409	-627	-1,246	17,536		
2022	13,555	19,015	-627	-1,218	17,170		
2023	13,350	18,709	-627	-1,196	16,886		
2024	13,088	18,315	-627	-1,168	16,520		
2025	12,883	18,008	-627	-1,147	16,234		
2027	12,679	17,702	-627	-1,125	15,950		
2027	12,504	17,439	-627.	-1,106	15,706		
2029	12,358	17,221	-627	-1,090	15,504		
2029	12,212	17.002	-627	-1,075	15,300		
2030	12,095	16,827	-627	-1,062	15,138		
	12,008	16,695	-627	-1,053	15,015		
2032	11,920	16,564	-627	-1,044	14,893		
2033	11,862	16,477	-627	-1,037	14,813		
2034 2035 ¹	11,862	16,389	-627	-1,031	14,731		

MT CO₂e = Metric tons carbon dioxide equivalent

Totals may not sum exactly due to rounding.

On average, ARB's estimate of annual emissions (Table 5) differs from the application (Table 2) by less than one percent. This difference is insignificant and indicates that the methodology and estimated GHG operational project GHG emissions provided by the Applicant are appropriate.

Based on the Applicant's proposal, annual project operational emissions would exceed baseline emissions by approximately 20 percent throughout the lifetime of the project.

¹ Emissions projections for both the baseline and the proposed project are constant after 2035. The useful life of the project would end in 2047, as defined

The applicant used GHG emission factors for electricity that will change over time due to the California Renewable Portfolio Standard (RPS), a program designed to meet statewide GHG reduction targets. The RPS requires 33 percent of grid electricity to come from renewable sources by 2020. Additionally, current ARB mobile-source emission factor estimates were used. These emission factors are based on a modified version of the ARB EMFAC2011 on-road inventory and include current emission reduction rules such as the Low Carbon Fuel Standard (LCFS), Advanced Clean Cars (LEV III), and the Phase I Heavy-Duty Vehicle GHG rule, to reflect the entire "on-road" fleet statewide.

The implementation of the above regulations is anticipated to result in continuous GHG reductions from the energy and mobile sectors and reduce overall GHG emissions over the life of the project. Applying these emission factors will affect the estimate of operational GHG emissions for both the baseline and the proposed project, resulting in an annual net difference of approximately 20 percent.

X. Method to Offset Emissions

Under the proposed methodology, the proposed project would result in a one-time net increase of 10,066 MT CO₂e during project construction, and an estimated net increase in GHG emissions of 4,099 MT CO₂e during the first year of project operation. Operational emissions will be on-going for the duration of the project life, and are expected to decline over the life of the project as emissions factors decline associated with adoption of lower-GHG-emitting vehicle technologies and renewable sources of electricity. The project sponsor agreed to meet the requirement set forth in California Public Resources Code section 21183, subdivision (c) to demonstrate that the project would result in no net additional GHG emissions through the purchase of voluntary carbon credits sufficient to offset all projected additional GHG emissions, as detailed in Attachment 3.

Notably, the commitments to enter into contracts to offset net additional GHG emissions will be incorporated as an improvement measure in the FSEIR for the proposed project. All improvement measures will be enforceable through the project's Mitigation Monitoring and Reporting Program (MMRP), which represents a binding and enforceable agreement between the Project Sponsor and the lead agency (OCII).

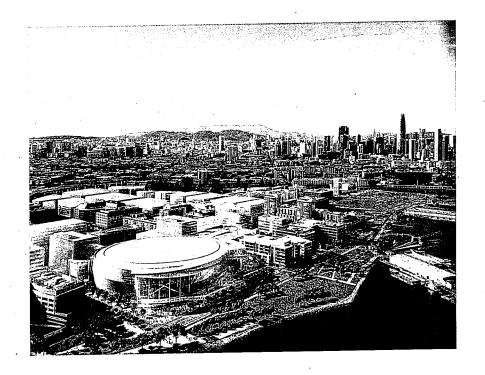
XI. Conclusions and Recommendations

Based on an evaluation of the documentation provided by the Applicant and its commitment to purchase GHG offsets, ARB staff concludes that the project operational

and construction emissions will not result in any net additional GHG emissions relative to the baseline.

ATTACHMENT 2

Application for Environmental Leadership Development Project


Golden State Warriors Event Center and Mixed-Use Development at Mission Bay Blocks 29-32

(Submitted February 17, 2015)

Application for Environmental Leadership Development Project

Golden State Warriors Event Center and Mixed-Use Development at Mission Bay Blocks 29-32

February 2015

Page

Contents

1 1.1	Project Proposal Project Description Consistency with Statutory Requirements for CEQA Streamlining					
2						
List of	Tables					
Tabl	e 1:	Project Land Uses				
List of	Attachments					
	bit A: bit B:	Golden State Warriors Event Center Site Plan LEED Scorecard				
_	bit C-1:	Transportation Efficiency Analysis				
	bit C-2: bit D:	Excerpt from Transportation Management Plan ARB Acceptance of GHG Quantification Determination for Plan Bay Area				
	bit D: bit E:	Written Acknowledgement of Notice and Obligations				
	bit F:	Wage and Investment Documentation				
	ibit G:	Greenhouse Gas Emissions Methodology Greenhouse Gas Emissions Calculations				

1 Project Proposal

GSW Arena LLC (GSW), an affiliate of Golden State Warriors, LLC, which owns and operates the Golden State Warriors National Basketball Association (NBA) team, proposes to construct a multi-purpose event center and a variety of mixed uses, including office, retail, open space and structured parking, on an approximately 11-acre site (Blocks 29-32) within the Mission Bay South Redevelopment Plan Area of San Francisco.

GSW, in their commitment to sustainability and the environment, are taking this opportunity to certify the new Event Center as an Environmental Leadership Project under California Public Resources Code (PRC) 21178-21189.3.

1.1 Project Description

Under the project, Blocks 29-32 would be developed with a multi-purpose event center and a variety of mixed uses, including office, retail, open space and structured parking on the approximately 11-acre site. The 18,064-seat arena would total 750,000 gross square feet (GSF), with an additional 25,000 GSF of GSW office space. The arena, basketball practice facility, and GSW office space comprise the event center. Two separate buildings will house office space totaling 580,000 GSF and retail space, which includes food service, totaling 125,000 GSF. With parking and loading areas of 475,000 GSF, the project total square footage is 1,955,000 GSF.

A Site Plan is provided in Exhibit A.

Table 1. Project Land Uses at Mission Bay Blocks 29-32

goods retail including food retail.

Land Use	Square Footage	
Event Center	750,000	
GSW Office Space	25,000	
Office Space	580,000	
Retail Space ¹	125,000	
Parking and Loading	475,000	

The project site is bounded by South Street on the north, Third Street on the west, 16th Street on the south, and by the future planned realigned Terry A. François Boulevard on the east. The proposed event center would host the Golden State Warriors basketball team during the NBA season and provide a year-round venue for a variety of other uses, including concerts, family shows, other sporting events, cultural events, conferences and conventions. GSW has entered into an agreement to purchase the project site from the current site owner, an affiliate of salesforce.com. The project is subject to review under the California Environmental Quality Act (CEQA) and a number of local and state approvals.

Project Proposal

Golden State Warriors Event Center and Mixed-Use Development

Development is allowed within the Mission Bay South Redevelopment Plan Area, including Blocks 29-32, consistent with the land use program and subject to the development controls of the Mission Bay South Redevelopment Plan, Mission Bay South Design for Development, and other related documents. No amendment to the South Plan would be required, although the proposed project at Blocks 29-32 would require certain amendments and/or variations to other documents.

The Mission Bay Final Subsequent Environmental Impact Report (Mission Bay FSEIR), certified in September 1998, is a program EIR under CEQA Guidelines 15168 and a redevelopment plan EIR under CEQA Guidelines 15180. The Mission Bay FSEIR analyzed the environmental impacts associated with the development program proposed for the entire plan area, including the program under the Mission Bay South Redevelopment Plan, which includes Blocks 29-32. Thus, under CEQA, the proposed project at Blocks 29-32 is considered a subsequent activity under the Mission Bay South Redevelopment program.

Concurrently with adoption of the Redevelopment Plan, the former San Francisco Redevelopment Agency (which was succeeded by the Office of Community Investment and Infrastructure, or OCII) entered into an Owner Participation Agreement with Catellus as Master Developer (now FOCIL-MB, LLC, as Catellus' successor-in-interest) (the "OPA"). The OPA provides a road map for development consistent with the Redevelopment Plan and the Mission Bay South Design for Development, and sets forth the rights and obligations of the property owner (the "Owner") to develop buildings and other improvements in the Plan Area. The OPA, in conjunction with the Redevelopment Plan and an Interagency Cooperation Agreement with other reviewing City agencies, is intended to establish the same types of vested rights typically found in a statutory Development Agreement.

The Owner's vested rights to develop the permitted uses and up to the maximum development intensity permitted under the OPA and Redevelopment Plan are passed to subsequent owners through various Purchase and Sale Agreements, Assignment and Assumption Agreements initially approved by the Agency and now by OCII, and related covenants recorded against title. FOCIL, as the master developer, allocates the overall land use and density/intensity allowed project-wide on a block-by-block basis as parcels are sold, and these allocations were initially tracked by the Agency and now by OCII in their Major Phase and project-level approvals. For example, Blocks 29-32 are subject to a recorded covenant that permits the owner to develop up to 1.1 million gross square feet (as defined under the Mission Bay South Design for Development) of commercial development, and all remaining square footage available for retail development in the Mission Bay South Plan Area, subject to necessary design approvals by the Agency in accordance with the Mission Bay South Design Review and Document Approval Procedure. FOCIL has assigned all attendant vested rights under the OPA to the Blocks 29-32 owner under an Assignment, Assumption and Release agreement approved by the Agency.

2 Consistency with Statutory Requirements for CEQA Streamlining

The following information shows how the Project satisfies the statutory requirements for CEQA streamlining as further informed by the criteria set forth in the Governor's Guidelines for Streamlining Judicial Review under CEQA (PRC) Section 21178 et seq.).

- Information to show the project is residential, retail, commercial, sports, cultural, entertainment, or recreational in nature.
 - The Project is sports and entertainment in nature. The project site is designed to be a multi-purpose event center, which will host the Golden State Warriors NBA team, as well as a variety of entertainment events, such as concerts, family shows, other sporting events, cultural events, conferences and conventions. The Project will also be retail and commercial in nature, as the center will also include office, retail, open space and structured parking. Proposed site plans for the Project are attached as <u>Exhibit A</u>.
- Information to show the project will qualify for LEED silver certification. The
 application shall specify those design elements that make the project eligible for
 LEED silver certification, and the applicant shall submit a binding commitment to
 delay operating the project until it receives LEED silver certification. If, upon
 completion of construction, LEED silver certification is delayed as a result of the
 certification process rather than a project deficiency, the applicant may petition the
 Governor to approve project operation pending completion of the certification
 process.

The Project has been designed to meet the standards for LEED Gold certification, which meet and exceed those required for LEED Silver certification. Relevant design features include, but are not limited to:

- Project siting in an urban infill area, immediately adjacent to a local transit stop and less than a mile from other regional transit resources, including train and ferry
- Maximization of open space (more than one-fourth of the total site area)
- Reduction of fan and employee trips by private automobile through an aggressive Transportation Demand Management (TDM) program, including participation in a local Transportation Management Association's shuttle program; provision of over 500 bike parking locations; and a mobile application to direct site visitors towards efficient and sustainable modes of transit
- Provision of carpool and vanpool spaces (5% of total spaces on-site)
- Provision of reserved spaces either for fuel efficient vehicles (FEV) (5% of total spaces on-site), or for vehicle charging stations (VCS) (3% of total spaces on-site)
- Stormwater quality treatment via on-site treatment basins
- 50% reduction in water usage for outdoor irrigation, through water-efficient landscaping (emphasizing native or adapted plants) and irrigation systems

15% (arena) or 24% (offices) greater energy efficiency than as discussed in Exhibit B. the LEED point tally

75% diversion of construction waste from landfill

Use of low VOC-emitting interior building materials and recycled content

A preliminary LEED point tally for the Project is attached as **Exhibit B**. Because final LEED certification is not granted until a project is completed and operational, the project sponsor will petition the Governor to approve project operation pending completion of the certification process, as permitted under PRC Section 21178 et seq.

Information to show the project will achieve at least 10 percent greater transportation efficiency than comparable projects. "Transportation efficiency" is defined as the number of vehicle trips by employees, visitors, or customers to the project divided by the total number of employees, visitors, and customers. The applicant shall provide information setting forth its basis for determining and evaluating comparable projects and their transportation efficiency, and how the project will achieve at least 10 percent greater transportation efficiency. For the purposes of this provision, comparable means a project of the same size, capacity

The Project will be highly transit-accessible for all site visitors and daily employees. Nearby transit resources, outlined below, were a key factor in choosing the Mission Bay Blocks 29-32 site for the Project.

- Local public access is primarily provided by Muni light rail stops along the T Third line. These include the UCSF Mission Bay stop at the corner of South Street and Third Street (at the northwest corner of the Project site) and the Mariposa stop at Mariposa Street and Third Street (one block south of the Project site). By 2019, the UCSF Mission Bay stop will be integrated into the city's Central Subway system, which in turn connects to the regional BART system. Several Muni bus lines also serve the Project vicinity.
- Regional public access is primarily provided via Caltrain at the 4th & King Street station, less than a mile from the Project, via BART from stations north and west of the Project site, and via the ferry routes terminating at the downtown Ferry Building about one mile away. The future Transbay Terminal in downtown San Francisco, scheduled to open in 2017, will enable additional regional travel with quick transit, bike, or shuttle connections to the Event Center project site.
- The Mission Bay Transportation Management Association (MB TMA) currently runs shuttles from Mission Bay to the 4th & King Street Caltrain station and downtown BART stops. The Golden State Warriors will join the MB TMA and contribute funds to enable the expansion of regular shuttle service hours and/or routes.

In order to make efficient use of the resources described above, the San Francisco MTA has proposed a project-specific Transit Service Plan (TSP). The plan will supplement

transit system capacity for guests of the Project's Event Center by adding express shuttle buses on key routes through the city and/or from major transit hubs. Proposed destinations include, for instance, the 16th Street & Mission Street BART station and the future Transbay Terminal. The plan also calls for staging additional light rail trains to serve guests during the high-demand post-event period. In total, the implementation of the TSP will increase the weekday evening transit mode share for Event Center patrons to 35%, which represents the maximum capacity available on San Francisco transit during event hours.

To encourage a similar increase in transit use for daily office and retail employees, and to incentivize Event Center patrons to use alternative modes to both auto and transit, the Golden State Warriors will also implement a robust Travel Demand Management strategy (TDM). Proposed measures include, but are not limited to, the following efforts.

- Promote the use of the indoor bicycle valet facility (approximately 300 spaces) during
- Provide indoor secure bicycle parking rooms, and shower and locker facilities, for employees in on-site office buildings
- Provide outdoor bicycle storage/racks for Event Center and office or retail visitors
- Designate parking spaces on-site for carpool or vanpool vehicles
- Develop a mobile application and website that puts information on all transportation modes-including travel conditions, travel times, and cost comparisons-into the hands of all users with smart devices. Display the same information on screens inside office buildings and Event Center spaces.
- Program additional on-site amenities (e.g., fitness and exercise centers, food and beverage options, or automated banking resources) to encourage employees to stay on-site during the work day
- Participate in the federal Commuter Check Program and San Francisco's Emergency Ride Home program
- Encourage tenant participation in public events like an annual "Bike to Work" day or "Spare the Air" days

As a result of these combined TSP and TDM efforts:

- Transit mode share is anticipated to increase by 15% (for basketball game patrons) or 17% (for office and retail workers)
- Vehicle mode share for is anticipated to decrease by 16% (for basketball game patrons) or 12% (for office and retail workers)
- Transit person trips for a basketball game are anticipated to increase by more than 3,600 patrons 4
- Vehicle trips for a basketball game are anticipated to decrease by more than 1,400 cars

Therefore, the Project will achieve at least 10% greater transportation efficiency than a comparable project of a similar size, capacity and location type. Additional information on transportation efficiency is included in <u>Exhibit C</u>.

 Information to show the project is located on an infill site, defined at Public Resources Code section 21061.3, and in an urbanized area, as defined at Public Resources Code section 21071

The project is located within a Priority Development Area (PDA), as identified by the San Francisco County Transportation Authority and the FEIR for the SCS. PDAs are, by definition, infill development opportunity areas. Under PRC section 21061.3, an "infill site" is defined as a site that "has been previously developed for qualified urban uses." A "qualified urban use," in turn, is defined as "any residential, commercial, public institutional, transit or transportation passenger facility, or retail use, or any combination of those uses" (PRC § 21072). The Project site has previously been developed for industrial use. The site is currently occupied by two large surface parking lots, as well as open space. There are no existing buildings currently onsite.

For a project that is within a metropolitan planning organization for which a sustainable communities strategy or alternative planning strategy is in effect, information to show the project is consistent with the general use designation, density, building intensity, and applicable policies specified for the project area in either a sustainable communities strategy or an alternative planning strategy, for which the State Air Resources Board, pursuant to subparagraph (H) of paragraph (2) of subdivision (b) of Section 65080 of the Government Code, has accepted a metropolitan planning organization's determination that the sustainable communities strategy or the alternative planning strategy would, if implemented, achieve the greenhouse gas emission reduction targets. For the purposes of this provision, "in effect" means that the sustainable communities strategy or the alternative planning strategy has been adopted by the metropolitan planning organization, and that the Air Resources Board has accepted the metropolitan planning organization's determination that the sustainable communities strategy or alternative planning strategy meets the adopted greenhouse gas reduction targets and is not the subject of judicial challenge.

Senate Bill 375 requires that each metropolitan planning organization in the state prepare a Sustainable Communities Strategy (SCS) as part of a regional transportation plan (RTP). The Project is within the jurisdiction of the Metropolitan Transportation Commission (MTC) and the Association of Bay Area Governments (ABAG), who are jointly responsible for developing the Bay Area's SCS. The SCS for San Francisco is "Plan Bay Area," which was adopted on July 18, 2013. Plan Bay Area has been accepted by ARB as sufficient to meet the GHG reduction goals of SB375 in Executive Order G-14-028, attached as Exhibit D, and it has been adopted by the Metropolitan Transportation Committee (MTC) and Association of Bay Area Governments (ABAG).

The California Air Resources Board (CARB), ABAG and MTC have adopted a greenhouse gas (GHG) reduction target for the SCS, requiring a regional reduction of per-capita $\rm CO_2$

emissions from cars and light-duty trucks by 7% by 2020 and by 15% by 2035, compared to a 2005 baseline.

Plan Bay Area does not have requirements for event centers. Although there are no quantitative requirements for event centers, the project will be built within a Priority Development Area (PDA), and Plan Bay Area emphasizes the importance of focusing growth in these areas. Additionally, the new arena will be located in a "transit priority area," which is defined in Section 21099(a)(7) as an area within one-half mile of a major transit stop that is existing or planned. A major transit stop is located at the intersection on the northwest corner of the project site.

Information to show that the applicant has notified a lead agency prior to the release of the draft environmental impact report that it intends to certify a project for streamlined environmental review under the Jobs and Economic Improvement Through Environmental Leadership Act of 2011. Written acknowledgment from the lead agency of the applicant's intent to apply for certification may be used to satisfy this requirement.

The Office of Community Investment and Infrastructure (OCII) of the City and County of San Francisco, the lead agency for the Project, has been notified that the Golden State Warriors are seeking certification for the Project under the Jobs and Economic Improvement through Environmental Leadership Act. Written acknowledgement from the City of San Francisco OCII regarding the Golden State Warriors' intent to apply for certification is attached as Exhibit E.

 Information to show that the project will result in a minimum investment of \$100 million in California through the time of completion of construction.

The Project is a major mixed-use development that includes the purchase, redesign, excavation, grading, and geotechnical improvement of an approximately 11-acre site. Planned building area includes a state-of-the-art, 18,064-seat entertainment facility, team practice facilities for the Golden State Warriors, a headquarters for the team's front office staff, and additional office and retail buildings, together totaling over 1 million square feet in development. The site will also include 3.2 acres of new public and private open space and over 900 parking stalls in three levels (two below grade). Anticipated construction duration is 23 to 27 months. Based on anticipated project costs, the Project will far exceed the \$100 million minimum investment requirement of Public Resources Code section 21183(a).

 Information to show that the project will satisfy the prevailing and living wage requirements of Public Resources Code section 21183(b).

During construction the Project will create high-wage, highly skilled jobs that pay according to the prevailing wages and living wages required by Public Resources Code section 21183(b). All workers employed for the construction duration of the Project will receive, at minimum, the general prevailing rate of per diem wages for the type of work and geographic area, as determined by the Director of Industrial Relations (DIR) pursuant to Sections 1773 and 1773.9 of the Labor Code. Rate details are included in Exhibit F.. The Project sponsor will include this requirement in all contracts for work performed.

• Information establishing that the project will not result in any net additional greenhouse gas emissions. This information includes (1) a proposed methodology for quantifying the project's net additional greenhouse gas emissions, and (2) documentation that quantifies both direct and indirect greenhouse gas emissions associated with the project's construction and operation, including emissions from the project's projected energy use and transportation related emissions; and quantifies the net emissions of the project after accounting for any mitigation measures. This information is subject to a determination signed by the Executive Officer of the Air Resources Board that the project does not result in any net additional greenhouse gas emissions, following the procedures set forth in section 6 of the Governor's Guidelines.

The proposed methodology for calculating Greenhouse Gas (GHG) emissions for the new arena project would treat the office and retail components of the project, which are the subject of fully vested legal rights, as immediately adjacent uses. Thus, the calculation of the emissions for the project would first estimate emissions associated with the arena components only. Next, the methodology proposes to deduct from those emissions totals certain "credits", as follows:

- (1) A deduction arising as a consequence of the proximity of the immediately adjacent office and retail components in the form of internal trip capture;
- (2) A deduction reflecting the sustainable features that will be incorporated into the office and retail components; and
- (3) A deduction of all emissions resulting from Golden State Warriors (GSW) games PLUS 50% of the Non-Sporting Events that were to occur at Oracle Arena in the absence of the Mission Bay Event Center, but will in the future occur only at the Mission Bay Event Center. Includes a deduction of emissions from the GSW Headquarters and practice facility emissions in Downtown Oakland, which will likewise move to the Mission Bay Event Center and cease operations in Oakland.

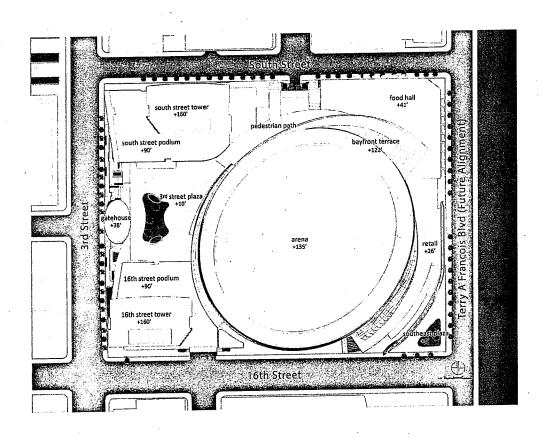
The proposed technical methodology for quantifying the Project's GHG emissions is attached as <u>Exhibit G</u>. It accounts for one-time emissions impacts due to Project construction, as well as annual Project operations emissions from 2017 through 2035. Where available, the proposed methodology uses site-specific data for employee numbers, trip rates, and energy and water use. Where site-specific data is not available, default values such as those recommended in the CalEEMod® land-use model have been used.

Based on this methodology, net operational emissions from the Project are estimated to be approximately 4,099 metric tons of carbon dioxide equivalent (MT CO₂e) for operational year 2017, decreasing to 2,923 MT CO₂e in 2035. Exhibits G and H show the total Project emissions as well as the emissions deducted for games and half of the non-game events at the Oracle Arena and GSW Headquarters in Oakland, as discussed above.

Project construction emissions, including both direct and indirect emissions, are estimated to be approximately 10,066 MT CO₂e over two years of construction. Construction of the project is a one-time source of emissions.

Consistency with Statutory Requirements for CEQA Streamlining With purchased offsets, there will be no net additional greenhouse gas emissions from the operation the project. In addition, offsets would be purchased for the one-time construction

Detailed GHG emissions calculations are provided in Exhibit H.


Information documenting a binding agreement between the project proponent and
the lead agency establishing the requirements set forth in Public Resources Code
sections 21183(d) (all mitigation measures will be conditions of approval and
enforceable, and environmental mitigation measures will be monitored and enforced
for the life of the obligation), (e) (applicant will pay costs for hearing by Court of
Appeal), and (f) (applicant will pay costs of preparing the administrative record).

Golden State Warriors' acknowledgement and agreement with OCII, as lead agency for the Project, regarding Golden State Warriors' obligations under PRC sections 21183(d), (e), and (f) is attached as Exhibit E.

Name of Applicant Representative: David Kelly
Title of Applicant Representative: General Counsel and Vice President, Basketball
Signature of Applicant Representative: Legal Affairs
Date: February 17, 2015

Exhibit A

Golden State Warriors Event Center Site Plan

SSR Smith Seekman Reid, Inc. 2995 Sidco Drive Nashville, Tennessee 37204

T: (615)383-1113

100% SCHEMATIC DESIGN SUSTAINABILITY NARRATIVE

Exhibit B

LEED Scorecard

10.4 - CAMPUS SUSTAINABLE APPROACH

10.4.1 - Process Overview

- The LEED Campus Approach streamlines the LEED certification process for larger and more complex projects. Multiple building projects that share a site, and are under the control of the same owner, developer, or property management, fall into the criteria of the campus program. Under the Campus Approach, several LEED credits and prerequisites may be reviewed and pre-approved. Once earned, these credits may be claimed by all LEED projects for that campus, though the Campus is not eligible for LEED certification itself. The US Green Building Council (USGBC) defines a campus credit as one that can be attempted for most or all projects within a LEED campus boundary because of shared site features and uniformity in project or management traits.
- As highlighted in Figure 29, the Campus project will consist of a Master Site with several individual building projects. The Office/Mixed-Use Development will be utilizing LEED Core and Shell. The North Tower and South Tower, inclusive of the Gatehouse, will pursue LEED individually, earning two separate LEED Gold certifications. The Event Center, inclusive of the Arena, Markethall and Bayfront Terrace, will use LEED for New Construction. Campusses with multiple segregated sites can register multiple LEED Master Sites to create groups of buildings within the campus. For this project the terms Master Site and Campus represent the same single entity within the LEED certification process. Therefore, from this point on the project will be referred to as the "Campus."

2995 Sidco Drive Nashville, Tennessee 37204

T: (615)383-1113

100% SCHEMATIC DESIGN SUSTAINABILITY NARRATIVE

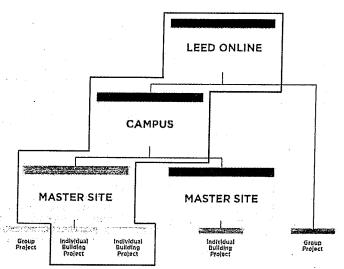


Figure 29. LEED Online Campus Application

10.4.2 - Project Registration

The Campus project is registered on LEED-Online, and the Event Center and
Office/Mixed-Use facilities will be registered early in the design phase once final building
configurations are finalized. These projects will be registered through the Campus LEED
website as the Event Center and Mixed-Use Development at Mission Bay Blocks 29-32.
Project team access to these LEED projects will be available via LEED-Online once
registration is complete.

10.4.3 - Campus LEED Detailed Scorecard

 The following page is a detailed list of all Campus credits along with design and construction criteria for the Mission Bay site.

MANICA

Page | 38 Section | 10

1 2995 Skico Drive Nashville, Tennessee 37204 T: (615)383-1113

100% SCHEMATIC DESIGN SUSTAINABILITY NARRATIVE

<i>P</i>		LEED 2009 Campus Application Scorecard		
100		Golden State Warners - Campus Crecits		
		12:19:2014		
	3 8332	amable Sites	2.3	
	_			Schematic Design Notes:
1 1	Conti	Sine Selection	•	Project should not impact any of the prohibited fund use types for this should. This sale is not considered a welfand or hamilal and for mough from key to meet minimum distance from a slar.
1 1	Con;	Development Density and Community Commicts by		The project is located clase to manufact porvertence to
1:1:	9-41	Beauth and Processiopersons	1	A Price I se construct is at purishment, and the late of a correlated branches). A contrasts of numerication or other discoverations and receipt to be based down in the Sukra
	Owner	Alternative Transportation—Public Transportation Access	•	Public transportation (at least two loss from) to provide to be true und
		*		Often Covers LEED Presence 3.7% of everlapt building because to Nave Delt pould. Exceld in the somewhat offen town occupanys, 120 billion agreement to excellently to ever these buildings. Covers deepen about the Gibb in building to the publishing. The isomorboad office bower RTE must be 2017, responsing 17 (0.5%) boxed phrasewers to be invalidable to missed two engineers to refund 200 before of the softly when the Buy such publishing.
		•		Event Center, Peak avant conservous corrupancy would require \$100 buyets parking spaces. Current design provides access to \$5 permanent bits recht with an autolismet von sepson; of 300 for angel violand. Trough the number of replations to read.
1 2 3	Contai	Afternative Tierrosoylation—Bicycle Elerates and Changing Rooms	7 CS / 1 HC	3% of test peak, a wid don't FEEs this a percentage of peak to repents per LEED Internations 3042. 3 EP will drough the approximate the latest with the second that the second to reside the second to reside the resident to reside the resident to reside the resident to re
			•	Compart East Femoment and a requires to a form that peaking for \$% of realize parting are only or from 200 feet (55 most) all reads of returners, and drag time pole parting for \$% of femoment parting top poly find are convent, models, and premisering and returners and drag for the period for the period feet of the state of the period feet of the period
	··			According to the Event Camer and Other Tower seriments, a total of 208 permanent bins section and 300 bits a select spaces will be required to be invaried monophoral that camput to ment compliance. Three numbers may change an energy properties.
				Ski, 1-50 special of fating spaces for businessing it had believe interest (TV) CRI Skings to "2" (-20 special) of joining spaces for second covering spaces (TVC). The approach for the papera wide to cut a generalization of total corrections designed spaces for special covering spaces (TVC) in a special coverance to the cut as considerable of the coverance of
, ,	CHOTI	Attemptive Transportston—Law-Environg and Puel-Ethnices Values	,	Shadd test (most provider a project som activating 20 VCS parting species, then 50 FEV absence will be parting the LEED and and LEED inquirements.
				3F Code requires at least 8% 1-80 scaces la be any conducers of lipmentary, Levi-Property curiosat on past bases. Analyshed be activated brough 5564.3 & 6564.6. SF Code requires specific as etting on put any sesses instead of Lipmes.
1 2	. Cheatt	Alternative Transportation—Prening Capacity	1	Designate 5% (~30 species) of source to source for surprod rethinds. SF Code is quived at least 3% (~30 species) to be any contributed of the-emptor, Lies effects, concept for pool secrets, which shad be scheduled \$7 shape \$25.6.3.8 \$36.4.3 \$F Code required sources perform a managed product or small of the product of th
	(ment 2.5	Ena Development - Masimize Open Epoca	. '.	27% industriant and interesty by in compliance. Protestivan accuracy tenderapy entire laborates and beforehabled as speci-
1 1	Gas ()	Stonewater Design—Quality Control	, ,	Personant for the credit are reserved by Ben Francesq (BF) sizes, and will be specified by the over-originar. Reserved softening are bring these and for sciences to reserved between. Three basest could be anywhere an the size and must be sized conjuncy. Personal of storms after the set shower more may be received descripting on grade and focation of the beams.
	Care 2.1	Fresh Infand Effect—Frencesol	1	Cre hardscape I pening in secrets and mode to be concrete or streprise of a light I reflective come. Color and proving cores will be determined by the design form.
1277	Western.	Miciency		
1 2	C	Water Entirers Landessong	264	To exhave her CT sorts be ST's in quiter water reductor, the project had need to which inches believe plants and se effect it requires return. St code require is weather 6 seed with one sensor at our inches to seed our surfaces for the projection regulated and the above here that the plants in patients under the area seed to ever 1,200-5000 stages level.
Ш				Error arrigation or required on side and entire review will not be pursued due to the cost impact. Option 2 for four (4) praints in no temper and faith to us for the project.
	2501326	s and Resources		
	. 1441	Contige and Collection of Recyclabies		For MF Case the first man will help response him throughout and a response through room or our evid by the meaning once.
	Indoor I	Invitonmental Quality	4	
Y. Y.	-	Environmental Tobacco Smalle (ETS) Control		The facility and he non-emoting, and the late and be non-emoting based on local inquarements

MANICA

Page | 39 Section | 10

2995 Sidco Drive Nashville, Tennessee 37204

T: (615)383-1113 www.ssr-inc.com 100% SCHEMATIC DESIGN SUSTAINABILITY NARRATIVE

· 10.5 - EVENT CENTER SUSTAINABLE APPROACH

10.5.1 - Narrative

- The 100% SD analysis identifies approximately sixty-eight (68) LEED® points that are
 available either within the current design or with minor modifications for the Event
 Center project. These credits are identified on the provided LEED® Credit Checklist
 under the "Yes" column. An additional seven (7) points identified under the "Maybe"
 column may be possible, pending further research and potentially higher investment.
 Credits under the "No" column were designated as such based on a higher associated
 cost or inapplicability to this project.
- With sixty (60) points required for LEED® Gold certification, this project is well
 positioned to achieve the minimum certification goal. A buffer of five to six (5-6) points
 above the desired certification threshold is recommended.
- With the Arena, Bayfront Terrace and Markethall being contiguous spaces these facilities will all be included as part of the Event Center's LEED application.

10.5.2 - Measurement & Verification

• LEED EA credit 5 Measurement and Verification is intended to provide for the ongoing accountability of building energy consumption over time. Through the use of utility invoices, building automation system (BAS) data logging, permanently installed submetering, and spot measurements, the facility will measure the actual utility usage of the building for each energy end use for at least 12 months post-occupancy. The method of metering will be primarily through the use of building meters and submeters. These meters will record the electrical and natural gas loads as indicated below and in the final M&V plan. These meters are intended to validate the anticipated energy savings indicated in LEED EAC1. See Electrical Narrative (Section 4) for more details on the networked metering system.

2995 Sidco Drive Nashville, Tennessee 37204

T: (615)383-1113 www.ssr-inc.com

100% SCHEMATIC DESIGN SUSTAINABILITY NARRATIVE

Table 9. Event Center M&V Preliminary Energy End Uses

Fuel Type	Category	Sub Category	Equipment				
	II-latu-		Interior Lighting				
	Lighting	Exterior Lighting					
			Variable Refrigerant Flow (VRF) Units				
		Packaged HVAC Equipment	AHUs, ERVs, DAUs				
		Equipment	CRAC Units, Split Systems				
]			Kitchen & Grease Exhaust Fans				
			Process Ventilation Fans				
		Fans	VRF Indoor FCUs				
	HVAC Equipment		AHU Supply Fans				
			Exhaust Fans				
		Heat Rejection	Cooling Towers				
F14-1-14-		HVAC Pumps	Heat Rejection Loop Recirc Pumps				
Electricity			Heating Hot Water Pumps				
<u> </u>			Radiant Heating Pumps				
			Condenser Water Pumps				
		Receptacle Loads					
		Event Center Event Lighting					
		Low Temp Chillers & associated Pumps					
	Plug/Process Loads	Ice Slab Chiller(s) & associated Pumps					
!		Elevators/Escalators					
		F	ood Service Equipment				
		Food Service Refrigeration Equipment					
	Service Water Heating	D	omestic Water Heaters				
	Service water nearing	E	omestic Water Pumps				
	Space Heating		Boilers				
Natural Gas	Service Water Heating	D	omestic Water Heaters				
ĺ	Plug/Process Loads	Food Service Equipment					

10.5.3 - Event Center LEED Detailed Scorecard

 The following scorecard details the credit by credit approach for the Event Center project, along with design and construction notes based upon the current design for the facility.

Page | 40 Section | 10

SSR Smith Seckman Reid, Inc.

2995 Sidco Drive Nashville, Tennessee 3720

T: (615)383-1113 www.ssr-inc.com 100% SCHEMATIC DESIGN SUSTAINABILITY NARRATIVE

	LEED 2009 for New Construction and Major Renovations Goden State Warriors Event Center - LEED Gold Credit Strategy Scorecord 12/10/2014		
22 1 3	Sustainable Sites Possible Points:	26	
Y	Privet I Contention Admiry Probation Prevention Cent I Bits Stelector Cent I Admirable Transposition—Cent Cent Congrigor Rosmo Cent I A Admirable Transposition—Cent Cent Centry Cent Centry Cent I Bits Stelector Cent I Bits Stelector Cent I Bits Stelector Cent I Bits Stelector Cent I Bits Centry	1 5 1 6 1 3 2	District/Construction Conditions and Cost Meets Provision of the prospect acceptance of the Provision of the Cost American Construction of the Prospect acceptance of the Provision Cost American Cos
+++	Crest 2 Heat Island Effect - Roof Crest 1 Ught Poliuton Reduction	.;	working I are table in white law, and orny. St code regions a Completion with 2 at 2, part of, Dection 147 to text the use signifing casign with read to be more efficient than the code between fewer and the property requirements for light template share code between fewer and the code to the completion of the see.
6 0 6	Water Efficiency Possible Points	10	
Ť	r Premig 1 Water Use Reduction2014 Reduction	•	Design/Construction Coordination and Goal Rotes: Facely will obtae auto-sensor restroom levisories, pint Rush (0.125 gpt) urhals, 1 28 gpt water closels, I.5 gpm break room saks, and I.5 gpm stouwerheads (depending on where the shower is booted).
1 1	Ciess 1 Water Efficient Landscaping	2104	CAMPUS CREDIT Vister rause for intestion was determined not feasible. Previously, this creat required a \$500,000.00 premium.
			A graywoler system will not be pursued at the new site. The only graywoler system will not be available until 2020+.

MANICA

Page | 42 Section | 10

Nashville, Tennessee 3720

T: (615)383-1113 www.ssr-inc.com

100% SCHEMATIC DESIGN SUSTAINABILITY NARRATIVE

16 8 14	Energy and Atmosphere Points	35	
Y 7 N	•		Design/Construction Coordination and Cost Notes:
[Y]	Present Fundamental Commissioning of Building Energy Dystems		Provisions for this creat are required by SF code, and will be specified by the CxA.
Y	Prince 2 Minimum Energy Performance		The lability will tribute an efficient mechanical and electrical design to achieve this prerequiate, more detail a described below under EA Crede 1- Optimize Energy Performance.
TT	Press Fundamental Refrigerant Management		This prerequiste will not be an issue to achieve because the building will have all new equipment.
7 8 7	Over 1 Operate Energy Performance	1 to 18	A minimum of 15% efficiency over 60.1.000T is required for the project, if RECs are purchased [25% if RECs are not purchased]. The designs of the safetype is backwest in sorts and an amount of 24% efficiency over the ASPREZ 60.1.00T begather with the pitchesial lookseen up to 34% reduction. The level of savings and number of prints for EAC crist 15 will be refund as the design propersists.
7	Own2 On-Site Renamble Energy	167	Due to budget and structure constraints, be well as conside with spontor logos, solar PV will no longer be pursued for the areas physical.
2	Overs Enhanced Commissioning	2	Provisions for this credit are required by SF code, and will be specified by the C.A. Independent Cx commissioning services will be included under commutant contract.
2	Over 4 Enhanced Refrigerant Menagement	2	This creat will be confingent on the pounds of rehighest per ion of cooling in the building's HVAC systems. This creat is not a coal few, but will just be obtermined beared on the first authorities date to the confine runs, but shoot have will be a high increase coaling causerby wraze lated or entities and provided expressive poorly grazes that creat will be table on provided expressive poorly grazes that creat will be table on extracting the creation of the confine provided or the cooling could be created to the confine provided or the cooling could be created to the cooling could be confined to the cooling confined to the cooling could be confined to the cooling confined to the cool
•	Gvots Measurement and Venecation	3.	In order to pursue this credit, the building systems will be metered per major bad category; lighting, plug loads, NVAC fams, pumps, feat rejection, it allows, and the subtem and cate centers will be supregulated. The Building Antonistion System will be set up to the category and a supplied to the supregulated. The Building Antonistion System will be set up to the category and supplied to the supregulated and supplied to the supregulated to the supplied to t
2	Cheel b Green Power	2	Pruthuising RECs loves the energy efficiency requirement for the project. Based on the current drugs nad overlay model of the event centre, RECs vouds door trought \$7,0000 for the points, plus an inversion point. Prevalsing RECs mental another of the copton for \$2 FF code requirements. REC quotes will be uppared to reflect the nivel energy inflood. REC cost per NYM is known to its cause, it when his final provides previous the dependent on the uncert size at time of provinces during construction.
[4] 3] 7]	Materials and Resources Possible Points.	14	
7 7 N			Design/Construction Coordination and Cost Notes:
TŸT .	Printed 1 Biologia and Collection of Recyclables		CAMPUS CREDIT
1 131 -	Crest 1.1 Building Reuseklaintein Existing Walls, Floors, and Roof	1103	N/A
	Crest 12 Building Reuse-Maintain 50% of interior Non-Structural Elements		N/A
2 .	Creek Continuation Waste Management	1 to 2	Construction waste recycles should be unitized to obtain a minimum 75% raile of diversion from the landte for construction materials to meet 3F code requirements.
2	Crede 3 Malanta's Rausa	1 to 2	Enough concrete pies will be crushed and re-used, cost will likely not be high shough to achieve this credit, but will contribute to MRCQ achievement.
2	Creat 4 Recycled Content - 20%	102	The specifications for this project should include details for using construction materials with recycled content.
1 1 -	Deat S Regional Materials	102	The specifications for this project should include datalet for using construction materials with regional confeet. The 2014 adultional Maybe point is dependent on the sourcing of the concrete during construction.
1	Owar & Rapydly Renewable Materials	5	The facility may not include the types of materials that would be considered replay renewable (bemboo, co.k., colon, etc).
1	Credit? Certified Wood	1	Utitizing FSC cereified wood products for doors and casework, to have 50% of the wood matches represented by FGC materials, has an incremental cost but in typically not a targe add to the project budget.

MANICA

Page | 43 Section | 10

2995 Skico Drive Nashville, Tennessee 37204 T: (615)383-1113 www.ssr-inc.com

100% SCHEMATIC DESIGN SUSTAINABILITY NARRATIVE

		,	
12 0 2	Indoor Environmental Quality	Possible Points: 15	
			Design/Construction Coordination and Cost Notes:
¥ 2 N	Preses : Ministrum Indoor Air Quality Performance		This design requirements for this presequisée are required by code.
(F)			CAUPUS CREDIT
'	Preset 2 Environmental Tobacco Smoka (CTS) Control Deset 1 Outdoor Air Delivery Monitoring	1	To achieve this creds, mechanical system will include all flow monitoring at outside air units (per standard design practice) and CD2 monitoring in densely occupied spectors.
لللا	· ·		30% increased ventration is likely because of evaporable cooling system professioned by mechanical design.
FH:	Oxect 2 Increased Ventilation Oxect 3.1 Construction IAQ Management Plan—During Construction	1	A best practice construction IAQ management plan will be developed and implemented to help protect IVAC systems and absorphe materials from moisture or debris contamination, as well as to preventingly VCC product usage in the facility. This in mondated through SE contamination is set of the state of t
1 2	Over 37 Construction IAQ Management Plan—Bethre Occupancy		Ogors 1. Pre-conceptor Statuth or consists of providing 1.000 paint less of existion of it, per square board from rese, the operation and increases and compared and contracts in the contract of term the condition of compared and contracts in contract of term the condition and contracts. The statuth cold country less any review to the contract of term the condition of the contract of term the contract of term the contract of terms the co
	Over 11 Low-Empiring Materials—Authorities and Scolants	1	Per SF code, low-VOC extrastives will be included in the specifications, there is typically not a cost add for these products based on current makes availablely.
 	Deect 2 Low-Emzing Materials—Palets and Coatings	i	Per GF code, low-VPC paints/coxings will be included in the specifications, there is typically not a cost add for these products bread on commit master are additionable to the specifications.
	Over 4.3 Law-Emitting Materials—Placeting Systems	f*	Per SF code, CRI certified carpets will need to be utilized, as well as FoodScare certified manufactured hard flooring products. These gray be some incorrectal cost for these products, but hypiosity not significant.
H,	Deat ++ Low-Emiting Materials—Composite Wood and Agrillow Product	u ,	SF gode requires una formation yet inter composee wood products and laminating adherives. Addedonally, all products in this category must not added he had been added in the category must not added he had been added in the category must not added he had been added in the category must not added he had been added in the category must not added he had been added he had bee
11 11.	Crest \$ Indoor Chemical and Polistant Source Control .		The HVAC units will need to utilize MERV 13 filtration on the verification air and MERV 8 Mers on the return (8F code), hooley will need minimum (6F each off melts or systems at entances, and copy machines will need to be in deducated access with self-desiring doors. This crodit regulate designs and one of conditions, but hybridary not a living contribution condition.
	CHOICE CONFIDENCE OF SYSTEMS—Lighting	1	Clubs, conference rooms, and multi-occupant areas will need demnable or dual stage lighting, and 50% of individual use assess (offices, social books, also will need complabile lighting. This building will Maily have a lighting control system, so this credit may have some intermental took but lately not notable.
	Ovde 6.2 Controllebility of Systems—Thermal Control	1	Clubs, conference rooms, and must occupant areas will pred to have theretosture, as well as 50% of individual use areas (lighet booths, offices etc.). This is close to standard design, but bould require additional zoning.
	Deca 7.1 Thermal Constant—Design	1	Faceley will be designed for thermal comfort with temperature, humidity, and air-speed.
		i	A thermal contact survey will need to be implemented within 5-18 months of building occurancy.
\mathbf{H}	Desert 2 Thermal Comfort—Vestions on Code 8 t Daylight and Views—Daylight		DaySchung will not be feasible for most interior spaces.
————	Oxide to Daylight and Views—Usylight	i	Carteriory will not be legishte for most interior spaces.

T: (615)383-1113 www.ssr-inc.com

100% SCHEMATIC DESIGN SUSTAINABILITY NARRATIVE

MANICA

Page | 44 Section | 10

MANICA

Page | 45 Section | 10

2995 Sidco Drive Nashville, Tennessee 37204

T: (615)383-1113

100% SCHEMATIC DESIGN SUSTAINABILITY NARRATIVE

10.6 - OFFICE TOWER(S) / MIXED USE SUSTAINABLE APPROACH

10.6.1 - Narrative

- The 75% SD analysis identifies sixty-six (66) LEED® points that are available either based on current design or with minor modifications, similar to the Event Center project. These credits are identified on the provided LEED® Credit Checklist under the "Yes" column. An additional sixteen (16) points identified under the "Maybe" column may be possible, pending further research and potentially higher investment. Credits under the "No" column were designated as such based on a higher associated cost or inapplicability to this project.
- With sixty (60) points required for LEED® Gold certification, this project is well positioned to achieve the minimum certification goal. As with the Event Center project, a buffer of five to six (5-6) points above the desired certification threshold is
- Due to the Gatehouse being connected to the southwest office tower, at this phase the facility will be included in the 16th Street Office Tower's LEED application.

10.6.2 - Measurement & Verification

 LEED EA credit 5 Measurement and Verification is intended to provide for the ongoing accountability of building energy consumption over time. Through the use of utility invoices, building automation system (BAS) data logging, permanently installed submetering, and spot measurements, the facility will measure the actual utility usage of the building for each energy end use for at least 12 months post-occupancy. The method of metering will be primarily through the use of building meters and submeters. These meters will record the electrical and natural gas loads as indicated below and in the final M&V plan. These meters are intended to validate the anticipated energy savings indicated in LEED EAc1. See Electrical Narrative (Section 4) for more details on the networked metering system.

2995 Sidco Drive Nashville, Tennessee 37204

T: (615)383-1113 www.ssr-inc.com

100% SCHEMATIC DESIGN SUSTAINABILITY NARRATIVE

Table 12. Office Buildings M&V Preliminary Energy End Uses

Fuel Type	Table 12. Office Build Category	Sub Category	Equipment		
ruet Type		Interior Lighting			
	Lighting	Exterior Lighting			
	HVAC Equipment		AHUs		
		Packaged HVAC Equipment	Packaged and Split DX Equipment		
			VRF Outdoor Units		
•			Rooftop AHU Heating Coils		
		Space Heating	UFAD Terminal Unit Heating Coils & Fans		
Elinite			Pedestal-type Radiant Heaters		
Electricity			AHU Supply Fans		
		Fans	Toilet/General Exhaust Fans		
			VRF Fan Coil Units		
		Receptacle Loads			
	Process Loads	Elevators/Escalators			
		Common Area Domestic Water Heaters			
	Service Water Heating	Tenant Area Domestic Water Heaters			

10.6.3 - Office / Mixed-Use LEED Detailed Scorecard

 The following pages are a detailed list of all Mixed-Use credits along with design and construction notes based upon the current design for the project.

SSR Smith Seckman Reid, inc 2995 Sidco Drive Nashville, Tennessee 37204

www.ssr-inc.com

100% SCHEMATIC DESIGN SUSTAINABILITY NARRATIVE

	d	EED 2009 for Core and Shell Development loken State Warriors Office Towers - LEED Gold Credit Strategy Scorecard 2/19/2014		
24 1 3		idstalrable Sites Possible Points	28	
				Conceptual Design Hotes:
		Constitution Activity Poliution Prevention		Provisions for the previousse are recurred by NPOED I SF code, and will be specified by the civil engineer.
Ÿ			1	CALIPUS CREDIT
			5	CAMPUS CREDIT
5			1	CAUPUS CREDIT
1		eera Grownheld Redevelopment		CALIPUS CREDIT
6	۰	Attembbre Transportation—Public Transportation Access	2	CAUPUS CREDIT
2	. 0	Here 2 Alternative Transportation—Bicycla Storage and Changing Rooms	3	CAUPUS CREDIT
3	- 6	met 4.3 Alternative Transportation—Low-Emitting and Fuel-Efficient Vehicles	, ,	CAUPLE CREDIT
2	. 0	Attendible Transponation—Parting Capacity	•	Compliance will be verified again after that landscape plans are available but due to the limited areas with vegetation that
1		edi S.: Sita DevalopmentProtect or Rostoro Habital	1	credit is not likely to be achieved.
اخلسا				CAMPUS CREDIT
1		was 12 Ste DevelopmentMaximize Open Space		4-5% to be allocated for treatment areas, i.e. vegetated trustee and tendectoring. Additional storage tens would be required.
		well in Stormwater Design —Quantity Control	•	Determined not to be pursued due to cost premium.
	_	nes 82 Stormweler Design—Guskly Control	1	CAMPUS CREDIT
4-1-1			1	CAMPUS CREDIT
11	•	werzs. Heat laland Effect—Hon-roof		The facility will need to have a light colored root. Depending on assinatic preference low-e-moring is available in white, Lim,
11 1 1		met 72 Heet Inland Effect—Roof	1	
		·		and gray). 3F code require compliance with Tide 24, Part 6, Section 147 so that the site lighting design will need to be more efficient than the bestelm, However, due to this cred its requirements for light trespect this credit will not be feasible based on the
- I. II		west a Light Poliuson Reduction	*	the betaline, However, due to the credits requirement for the company one to the
1111	٠	Mile Desir Descriptions		compactness of the site. Develop an abulished document that provides language with dealign and construction information, specifically related to
				Develop an invelopand document that provides unarry was party and such actioned credits. Include sustainability goals Commercial inseriors as well as how the Core and Shell project complies with actioned credits. Include sustainability goals
. 1 1 1		Heart Tenant Design and Construction Guidalines	1	and objectives as well as information on any create requiring coordination between CS and CI.
,				and disperses as well as a following the angle of the control of t
5 1 4	ľ	Vater Efficiency Possible Points:	10	
	•			Conceptual Design Hotes:
<u>, , , , , , , , , , , , , , , , , , , </u>				Facity will unlice succ-sensor restroom leverories, pmt fush (0,125 gpf) unlasts, 1,26 gpf water closels, 1,5 gpm break room
y l		west Water Use Reduction—20% Reduction		sines, and 1.5 gam showerheads (depending on where the shower is localized).
2 121		Water Efficient Landscaping	2104	CAMPUS CREDIT
2 2	٠	No Polacie Water Use or Infortion	4	Water reuse for infigation was determined not feasible.
			•	A graywater system will not be pursued at the new site. The city graywater system will not be averable until 2020+.
2		best 2 Innovative V/astervator Technologies	•	The same of the sa

MANICA

Page | 48 Section | 10

2995 Skico Drive Nashville, Tennessee 3720

T: (615)383-1113 www.ssr-inc.com 100% SCHEMATIC DESIGN SUSTAINABILITY NARRATIVE

16 7 14	Energy and Almosphere	Pussible Politis: 35	
	Zito ()) And Annual Property		Conceptual Design Notes:
Y ' '	Perse : Fundamental Commissioning of Building Energy Systems		Provisions for this credit are required by EF code, and will be specified by the CAA.
			The Body will use an efficient mechanical and electrical design to achieve this prerequists, more detail is described below
lyl ·	Preset : Mesirrum Energy Performance		under EA Credit 1- Optimize Energy Performance.
H	Press Funcamental Reingerant Management		This previous to will not be an issue to actions because the busining will have as new equipment.
100	Orde 1 Ophyrize Energy Performance	3 to 21	The design will use statisties to schieve the credit, terpaining a minimum of 24% efficiency over the ADSPARE 90.1-0007 baseline with the potential is advant a higher percent modulation. The point attended to the scorecard is consensione in nature based on previous projects consensions when energy models are used.
1-1-1-1	Cods 2 On-Site Renewable Energy	4	Although some level of solar PV may be installed on the office (owers, the extent of the system) will not likely be large enough to arrive LEED points for this great.
1,11	Cuels Enhanced Commissioning	2	Provisions for this credit are required by SF code, and will be specified by the CLA. Independent CL commissioning services will be locked under consultant contract.
$H_{1}H$	Count Enhanced Rehtgerant Managerrant	Z	The credit will be connigent on the pounds of rein gerant per ton of cooling in the building's INVAC systems, and will be determined after final equipment selections.
1,11	Charles Measurement and Venfiction Base Building	3	In order to passue this credit, the building systems will be meleced per major back caregory. Spining, plug backs, RVAC fane, pour ps, heat rejection, healing, and the Justices and data contents will be suprograted. The Building Automation System will be pastup be bank, seen, and eport this inhormation potentially in a deathboard shread;
H-H.	Diver 3.2 Measurement and Versicution-Tenant Schmeburg	3	Based on Install tenant interest, it is unlikely that the office buildings will be multi-tenant, therefore tenant submitteding will no longer be pursued.
2	- Crimes Ocean Power	2	Story or to share. Based on the current study, and serving month RCs mouth this receipt \$1,000 be the effect buildingst. Purchasing RECs all based on the current poperate for \$C interest processing the current serving months of the current serving months of the current serving months of energy months. REC cuts are belonged to credit the Receipt months of the current serving months of the current serving and the current serving months of the current serving as the current serving months of the current serving and the current serving months of the current serving months
		·	
1117	Materials and Resources	Possic e Points. 14	
			Conceptual Design Hotes:
, Y 7 N	A A Revenue of Republica		CAMPUS CREDIT
	Print Storage and Collection of Recyclations Deat 1 Building Reuse-Maintain Eulsting Walls, Floors, and Roof	1105	N/A
	Dest 1 Building Reute-Maintain Eutring Vital E. Pitters, Stat Hour	****	Construction waste recyclers should be usezed to obtain a minimum 75% rate of diversion from the lander for construction
2	Creet 2 Construction Y/aste Management	1102	metarials to meet DF code requirements.
	Crees > Malenals Reuse .	1102	N/A
2		1102	The specifications for this project around include details for using construction materials with recycled content.
		1102	The specifications for this project should include details for using construction materials with regional content. The 20%
14141	Owers Regional Malerials	. 102	additional Maybe point is dependent on the sourcing of the concrete during construction.
H	. owice Carded Y/ood	. 1	analogues and you then an experiment of the control and casework, to have 50th of the wood praturals represented by FSC (intering FSC centred wood products for doors and casework, to have 50th of the wood praturals represented by FSC (intering FSC centred control control to it is typically not a large and to the project budget.

MANICA

Section 10

SSR Smith Seckman Reid, Inc. 195 Sidco Drive ashville, Tennessee 37204

T; (615)383-1113 www.ssr-inc.com 100% SCHEMATIC DESIGN SUSTAINABILITY NARRATIVE

	_						
11	0	1	Indee	r Environmental Quality	Possible Points	15	
	, K	•					Conceptual Design Notes:
ŤΠ				Minimum Indoor Air Cluarly Performance			The design requirements for this principus/o are required by code.
₩		- 21		Environmental Tobacco Smoke (ETS) Control			CAMPUS CREDIT
٧,	1			Outdoor Air Dalhary Monatoring		1	To achieve the creat, mechanical system well include airflow monitoring at outside ser units (per standard design procade) and DOZ monitoring in densely occupied space).
וי		1					and I was a supplied the best of the season between the performance at mechanical design progressive.
7	F			Increased Ventlation Construction IVID Management Plans-During Construction		,	A best practice construction IAO management plan will be developed and implemented to help protect HVAC systems and appropriate protect HVAC systems and appropriate materials from moissure or debris contamination, as well as to prevent high VOC product usage in the facility. This
,	L	1		•			a mendated through SF code. Per SF code, low-VCC sametives will be included in the specifications, there is typicarly not a cost add for these products.
	1	ı	Code41	Low-Emising Marenase—Achievines and Seplant		,	based on current market availability.
+	+	١.		Low-Emitting MaterialsPaints and Coatings		1	Dated on Control Tracks are seen and the second of the specifications, there is typically not a cost and for these products based on control tracks to watching.
4	+-					1	Per SF code, CRI cereired carpets wit need to be united, as well as FloorScore cereired manufactured hard pooring products.
1	ł	1	Comit	Low-Emitting Materials—Flooring Systems			
,	T	١.	CHRIS	Law Emiling Materials—Composite Wood and Agritiber Products		1	category must meet Californie Air Resources Board Air Torica. Control seasons as Composite mode (17 Com a or to by or before the dates specified in those seasons
-	-	1		and the second s			The HAG units will need to soke MERV 13 fersion on the vent letter or and MERV 8 firers on the return (SF code), facility
	-	١.	CHIL	Indoor Chemical and Pollutant Source Control	•	t	est need minimum 10' wells off mass or systems at entences, and copy macrones and records to be at social and cosing doors. This creat requires design and toyout commission, but typic ally not a large construction cost.
	1.	١.					Provide individual comfort controls for 50% of building occupants to enable adjustments to meet individual needs or
T		1.	Cress	- Controllability of SystemsThermal Combon	:	1	preferences. Must purchase and/or initial the mechanical system or operators sundows to make the requirement of the country.
. I	1_	J		•			Facety will be designed for thermal comfort with temperature, humidity, and an append.
亚		١.	Code	Thermal Comfort—Dalugh			Operated and weres to be reviewed once project crawings are introd.
┰	1	١.	0441	Daylight and Vews—Daylight		:	Daylors and views to be reviewed once project or swings and is used.
	9 -	١.	Code	Daylight and Views		•	
					Possicio Points	Α.	
न	• 6	1	lanos	ation and Dealign Process	PORKETO POJES	•	Conceptual Design Notes:
Ţ	, ,						Executed the Light Nation: Facility can achieve litre credit by Naving a comprehensive green builting education program, including signage, website
ŤΤ	T	1	Conti	tonovation in Design; Green Building Education		1	programment, and potentially a keak or destriboard.
1	╁	1		Inneration in Design: Orden Housekeeping		1	Facility can utilize a green cleaning program that emphasitize nonnamital chemicals, and applyment that is less impactful to operations staff (noise, vibration, organization). This will require coordination with operations staff (it make) manager.
		ŀ					The project could achieve exemplary performance in secycled material content.
1	\neg]-	O-MIT	Exemplary Performance: MRc4 - Recycled Cordent			The project on 41 school as covered participance in principality poor space.
11	1	1	: CHAIL	Exemplary Performance: 55c5 2 - Maximize Open School			action arment of experitary performance in creen power should be a rea tonable cost, quote to be requested.
71	7	۱.,		Eremplacy Performance: EAc6 - Green Power			The project will have several LEED professionals, and a team fechating the sustainability process.
11] ::	: Crest	LEED Accredited Professional			In the second se
		-		the state of the s			
11	1 1	1	Regis	mat Priority - Zip code 94158	Possible Points		Territoria de la companya de la comp
	7 H	-					Conceptual Design Note: A regional priority credit in open space should be feasible for the 30% open space anechased for the project.
iT	<u> </u>	1.	: Own Li	Regional Priority: SSc5.2 - See Development - Maximize Open Sp	#C#	1	A regional priority chief in open space around an end of the text of the project, but also an option, persong WE co.
	-1-	1.	Court	Regional Priority: WEc3 - Water Use Reduction		1	Any on sits requested is not triefy for the project, but an action to the service LEED points. Any on sits renewable energy installed will likely not meet LEED requirements to achieve LEED points.
-+	4,	ł.	· fuel	Regional Pronty: EAc2 - On-site Renewable Energy		1	Any on-sits renewable energy installed well likely not meet Listo requirement as access to be only on the list of the wings. A regional priority credit for displaying may or may not be fees ble, to be received with project displaying.
	;;;	Ⅎ".	Comi	Regional Priority: EOc8.1 - Daylight and Views - Daylight		1	A regional priority credit to daylight may or may not be man set, to be reviewed well project una visite.
	<u></u>	1					

MANICA

Page | 50 Section | 10

2995 Sidco Drive Nashville, Tennessee 3720

T: (615)383-1113

100% SCHEMATIC DESIGN SUSTAINABILITY NARRATIVE

10.7 - ALTERNATIVE STRATEGIES

10.7.1 - Solar Photovoltaic (PV) System

Office Tower(s)
 The opportunity exists for a solar PV system to be installed on the office tower roofs; however, the extent of the system will likely not be large enough to achieve any LEED points for the on-site renewable energy credit.

10.7.2 - Educational Opportunities

- Campus Signage
- While signage options have yet to be discussed in detail, it is understood that technology is expected to be incorporated in some fashion.
- High Performance MEP Systems

10.8 - TENANT LEASE LEED GUIDELINES

The following credits being pursued by the Office Towers must be addressed in a Tenant Lease Agreement. LEED for Core and Shell requires certain credits to be specified in the tenant lease (shown in bold below). Additional credits will assist in the required LEED for Commercial Interiors certification as they will affect future building tenants.

- SSc4.2: Bicycle Storage and Changing Rooms
- WEp1: Water Use Reduction
- WEc3: Water Use Reduction
- EAp2: Minimum Energy Performance
- EAp3: Fundamental Refrigerant Management
- EAc1: Optimize Energy Performance
- EAc3: Enhanced Commissioning
- EAc4: Enhanced Refrigerant Management
- EAc5: Measurement and Verification
- IEQp1:Minimum Indoor Air Quality Performance
- IEQp2: Environmental Tobacco Smoke Control
- IEQc1: Outdoor Air Delivery Monitoring
- IEQc2: Increased Ventilation
- IEQc3: Construction Indoor Air Quality Management Plan
- IEQc5: Indoor Chemical and Pollutant Source Control
- IEQc6: Controllability of Systems
- IEQc7: Thermal Comfort
- IEQc8: Daylighting and Views

The Tenant Guidelines and/or Lease Agreements are typically drafted during the core and shell design phase. The document should be provided to future tenants during lease negotiations and must be provided prior to tenant design work.

IANICA

Page | 51 Section | 10

Exhibit C-1

Transportation Efficiency Analysis

Golden State Warriors Event Center

		GSW Event Center and Mized-Use Development at Blocks 29-32	Comparable Project(s)		
	The second second second				
Proof of	Sie	Event center and team facilities	Event center and team facilities		
comparable	r.,	Approx. 510,000 GSF office	Approx. 580,000 GSF office		
projects	1	Approx. 125.000 GSF retail	Approx. 125,000 GSF retail		
projects	Capadiy	Approx. 18.000 seats (event center)	Approx. 18,000 seats (event center)	ì	
		Approx. 2.500 antiki pared office and retail employees	Approx. 2.500 enticipated office and retail employee	<u> </u>	
	Location Type	San Francisco Infel Area	Sen Francisco Infel area		
	10000000	Superdistrict 3	Superdistrict 3		
	1	Mission Bay Blocks 29-32	Mission Bay Blocks 29-32		•
Project	MED Terget	LEED Gold certification	LEED Silver arena, LEED Goldmired-use buildings		
	Parking	Annes, 950 total vehicle spaces	Approx. 1,270 yel-kie spaces (Design for Developms	nt code requirement)	
Descriptions	Laurent .	+5% carpool			i i
	1	- Either 3% electric vehicle charging stations or 5% fuel-			i
	1	efficient vehicle spaces			,
	1	Appropr. 500 total biks spaces	Approx. 60 total bike spaces (Design for Developmen	e code requirement)	
	Transit Service	Muni Special Event Transit Service Plan (TSP)	Standard transit system service (no TSP)		
	infrastructura	Mission Eav TMA designated shuttle stop	No designated shuttle stop		
	10,100,000	Sports ared Bay Area Bile Share station	No bare share station		
	le e	Addisional buffered bike lanes on 16th Street	No additional buffered bike laves		
	Cransportation Demand	Yes (robust strategy)	No		
	Management (TDM)				
	promise interest (10mg)				Variance due to TSP/TDM
		GSW Event Center and fritzed-Use Development at Blocks 29-32, Sasketball	GSW Event Center and Mixed-Use Development at	Blocks 29-32, Basketball Event night (TSP/TDM NOT in	Variance due to 137/10M
Mode Split - Event Patrons		Event night (TSP/TDM in effect) (1)		kr) (1)	16% reduction in Auto trips
EAGUE NEED DUT	Auto	SIX	70%		15% increase in Treast tries
	Transit	15%		10×	1% increase in Walk/Other trips
	Walk/Other	11%		10%	Variance due to TDM
14.4.4.4.	WHE/DUNK	GSW Event Center and Mized-Use Development at Blocks 29-32, No event	Sen Francisco Guidelines for Visitor Trips,	San Francisco Guidelines for Visitor Trips,	Variance due to I DM
Mode Split -		night (TDM in effect) [2]	Superdistrict 3, All Non-Retail Uses (TDM NOT in	Superdistrict 3, All Retail Uses (TDM NOT in effect)	
Daily FT(s and	I		effect) (1)	(1)	
Visitore	I	i			12% reduction in Auto trips
		45 N	57X	64%	12% reduction in Auto trips
	Zensit	108	19%	12%	4% increase in Walk/Other trios
	transt	20%	25%	24%	476 Increase in Walk/Other trips

[1] Advant Complete and LCW Consulting CS Worston Trip Con 2015 01 2017 125 on the TSF. Transmitted to the Golden State Warriors via email Fabruary 8, 2015).

Exhibit C-2

Except from Transportation Management Plan

Final Transportation Management Plan – Golden State Warriors San Francisco Event Center and Mixed Use Development December 2014

CHAPTER 4. TRAVEL DEMAND MANAGEMENT

The purpose of the strategies described in this chapter is to increase the level of access to the project by transit, bicycling and walking while discouraging the use of private automobiles, particularly by solo drivers. The strategies identified in this chapter will be reviewed and refined both during the Event Center's first year of the project's completion and as new transportation facilities are developed in the project vicinity.

4.1 GENERAL TRANSPORTATION MANAGEMENT STRATEGIES

Measures that will be implemented to support all public transit, bicycle, and automobile reduction strategies include:

- Appoint an Event Center Transportation Coordinator (ECTC) to: manage the transportation needs of
 employees and event attendees; provide information and education materials; implement and
 administer various TDM measures; coordinate with nearby employers; promote use of rideshare;
 encourage use of public transportation, Mission Bay TMA shuttles, and bicycles; conduct surveys to
 determine travel mode and other relevant information; and implement new strategies as needed to
 meet target auto mode share and reduce impacts to adjacent businesses and residents.
- 2. Develop means of in-building communication (radio, TV, smart phone app, etc.) that give Event Center, office, or retail users multiple, real-time advisories about the status of the transportation system to facilitate convenient transportation choices that include availability of public transit and shuttle bus service, location and capacity of bike parking facilities, best walking paths, location of taxi stops, and limited extent of or high price for available parking.
- 3. Develop a crowd-sourced app that puts information on all transportation modes in the hands of event attendees with smart communication devices. This real-time information on travel conditions and travel times by mode will lead to a transportation system that will become increasingly more user optimized. The app will be free and available to anyone who wishes to download it, and will be useful for anyone working, living, or visiting the Mission Bay Area.
- Provide extensive use of real-time transit info in public assembly areas that reflect the range of transit services in the area.
- 5. Install a machine to add value to Clipper Cards on-site.

4.2 EMPLOYEE TDM

The strategies described below are designed to limit employee auto mode split for weekday, peak-hour travel to no more than 48 percent.

4.2.1 Employee Public Transit Strategies

Measures that will be implemented to increase the use of public transit among employees of the office, retail, and event center uses on-site include:

 Participate in Commuter Check Program, a federal program that allows employees to reduce their commuting costs by up to 40 percent using tax-free dollars to pay for their commuting expenses. Final Transportation Management Plan – Golden State Warriors San Francisco Event Center and Mixed Use Development December 2014

Notify employees that they are eligible to ride the Mission Bay TMA shuttles, and provide information about routes, stop locations, and schedule.

4.2.2 Employee Bicycle Strategies

Measures that will be implemented to increase the frequency and convenience of biking among employees of the office, retail, and event center uses on-site include:

- 1. Promote use of the indoor bicycle valet facility (approximately 300 bike spaces) at Bayfront Park.
- 2. Provide indoor secure bicycle parking facilities for employees in office buildings and retail uses on-site.
- 3. Provide outdoor bicycle storage/racks for Event Center and office or retail visitors.
- 4. Sponsor Bay Area Bike Share pod(s) in the project vicinity.
- Provide shower and locker facilities in each on-site building for Event Center Development employee use.
- 6. Encourage all employees and guests to participate in public events that promote bicycling such as the annual "Bike to Work" day.

4.2.3 Employee Automobile Reduction Strategies

Measures that will be implemented to reduce the effects of employee vehicular traffic include:

- . 1. Allow employees to work flexible schedules and telecommute, to the extent possible.
- Support Ridesharing Program Participate in free-to-employees ride-matching program through www.511.org.
- Emergency Ride Home Program Participate in ERH program through the City of San Francisco (www.sferh.org).
- Organize and publicize promotions like Spare the Air days (as declared for the Bay Area region) or a Rideshare Week.
- Encourage carpooling and vanpooling by designating/reserving some Event Center garage parking spaces for employees who use those modes.

4.2.4 Additional Strategies

- Encourage employees to choose electric vehicles (EVs) over gas-fueled autos by designating/reserving some Event Center garage parking spaces for EVs and providing charging equipment.
- Program additional on-site amenities (fitness and exercise centers, food and beverage options, automated banking resources) to encourage employees to stay on-site during the work day.

4.3 EVENT CENTER PATRON TDM

The strategies described below are designed to limit event patron auto mode split for weekday, peak-event travel (6:00 PM to 8:00 PM) to no more than 53 percent.

Final Transportation Management Plan – Golden State Warriors San Francisco Event Center and Mixed Use Development December 2014

4.3.1 Patron Public Transit Strategies

Measures that will be implemented to increase the use of public transit among guests include:

- Reward patrons arriving via transit with implementation options that may include discounted food or beverage, team or venue merchandise, raffle entry, or access to a "fast-track" security line. Market these incentives with a robust communications strategy prior to an event day so that guests can make choices accordingly.
- Establish a partnership to brand Clipper Cards and/or transit stops and stations near the Event Center to encourage the mental association of event attendance with transit usage during attendee's trip planning process.
- 3. Promote transit access to project by: providing interactive trip-planning tool, transit maps, with recommended stops/stations for accessing site; best routes to the Event Center; and walking directions from transit stations/stops. Provide these on the Event Center web site, on websites of events taking place at the site (to be required as a standard part of event contract), and mobile app. Provide real-time transit information, including train or bus arrivals and departures, in key Event Center locations (exit areas, gathering areas, etc.), inside the building (on TVs and other screens) post-event.
- 4. Utilize TVs and other screens inside the Event Center building to display real time transit information and prominent comparisons between transportation choices available to fans, employees, and visitors to the Event Center Development. Emphasize transit's lower-cost, higher sustainability, and other beneficial factors as compared with private autos.
- 5. Play recorded announcements during halftime (for games) or between opening and main acts (for concerts), and as Event Center attendees exit the building, to notify guests of non-auto travel options home, including real time transit and shuttle departure times.
- Provide additional communication of transit options and wayfinding during playoff games for nonseason pass holders who may be coming from out of town by providing information to, and coordinating displays within, hotels and local businesses in the Event Center vicinity

4.3.2 Patron Bicycle Strategies

Measures that will be implemented to increase the frequency and convenience of biking among Event Center patrons include:

- Promote use of the indoor bicycle valet facility (approximately 300 bike spaces) at Bayfront Park.
 Reward patrons of the bike valet with implementation options that may include discounted food or
 beverage, team or venue merchandise, raffle entry, or access to a "fast-track" security line. Market these
 incentives with a robust communications strategy prior to an event day so that guests can make
 choices accordingly.
- 2. Provide outdoor bicycle storage/racks for Event Center and office or retail visitors.
- 3. Sponsor Bay Area Bike Share pod(s) in the project vicinity.
- 4. Encourage all employees and guests to participate in public events that promote bicycling such as the annual "Bike to Work" day

Final Transportation Management Plan – Golden State Warriors San Francisco Event Center and Mixed Use Development December 2014

- Provide temporary outdoor bike valet parking areas in both major plazas for peak events that experience bicycle storage demands that exceed the 300 space indoor valet facility.
- 6. Provide a bicycle map, showing routes to the Event Center development site, on the Event Center web site and mobile app.

4.3.3 Patron Automobile Reduction Strategies

Measures that will be implemented to reduce the effects of visitor vehicular traffic include:

- 1. Increase fees for parking on-site above typical event center rates.
- Design a "Getting There" page for the venue website that lists multi-modal options and comparisons before showing preferred driving routes or available parking.
- Promote transit and bicycle information on event site website, event apps, and in event literature and advertisements, when appropriate.
- Provide electronic message boards displaying upcoming event schedules to discourage auto use and parking on-site.
- Designate priority curb areas on-site for taxis and rideshare vehicles. Explore partnership options with rideshare/carpool/TNC companies to offer discounts to event attendees.

4.4 SPECIAL EVENT TRANSIT SERVICE PLAN

This section summarizes a preliminary Transit Service Plan (TSP) for the Warriors Event Center and Mixed Use Development as outlined by the SFMTA in a presentation on October 1, 2014.

4.4.1 Service Plan Objectives

The key objective for the TSP is as follows:

- Provide high quality service to event goers, without affecting service reliability for other Muni customers
- Accommodate à 35 percent transit mode share for peak events.
- Develop a service plan that maximizes existing infrastructure and prioritizes operations efficiencies

4.4.2 Service Plan for Peak Event

The majority of regional transit riders will use Muni as a last-mile connection to the Event Center Development. Most Muni passengers will travel on the T 3rd southbound pre-event, and northbound post-event. The T 3rd service pre-event is expected to have excess capacity, while post-event excessive capacity will not be allocated from regular service, but rather will be served from additional trains and supplemental routes. The T 3rd service will be supplemented with bus service to respond to distributed customer demand, to minimize transfers made, and to minimize rail car demand. Inset 4-1 shows proposed routes for each of the supplemental shuttles. Supplemental bus routes include:

- T'3rd Supplemental Service
- Metro Shuttle via The Embarcadero

Final Transportation Management Plan – Golden State Warriors San Francisco Event Center and Mixed Use Development December 2014

- 16th Street BART Station Shuttle
- Van Ness Avenue Shuttle
- Ferry Building / Transbay Terminal Shuttle

inset 4-1 Supplemental Shuttle Routes

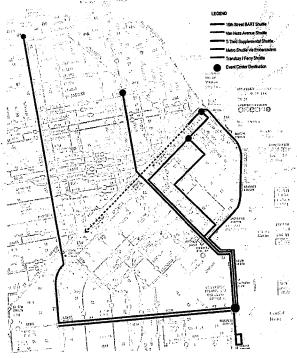


Table 4-1 summarizes the fleet of shuttle buses and light rail vehicles necessary for pre- and post-event scenarios.

Figure 4-1 shows the pre-event shuttle plan, including stop locations at the site. Figure 4-2 shows the postevent shuttle plan; including shuttle stop locations, staging areas, and temporary lane closers, which are discussed in more detail in Chapter 6. Final Transportation Management Plan – Golden State Warriors San Francisco Event Center and Mixed Use Developme

TABLE 4.1. DREITMINARY TRANSIT SERVICE PLAN FOR PEAK EVENT

	FLEET NECESSARY				
SERVICE	Pre-Event	Post-Event			
T 3 rd Supplemental Service	4 two car trains between Chinatown and Mission Bay Loop combined with 4 minute scheduled subway service	10 two car trains staged to clear event			
Metro Shuttle via The Embarcadero	None – limited car availability	2 three car trains staged to clear event			
16 th Street BART Station Shuttle	4 articulated motor coaches operating between 16 th Street BART and the arena every 7-8 minutes	4 articulated motor coaches + 1 standard motor coaches operating between 16 th Street BART and the arena staged to clear event with half of vehicles returning for a second trip			
Van Ness Avenue Shuttle	5 standard motor coaches operating every 12 minutes along the Van Ness corridor to arena via 16 th Street	4 standard motor coaches operating to the Van Ness corridor via 16 th Street staged to clear event			
Ferry Building / Transbay Terminal Shuttle	6 standard motor coaches operating every 10 minutes via Ferry Plaza and the Transbay Terminal to the arena	6 standard motor coaches operating to Transbay Terminal and Ferry Building Plaza staged to clear event			

Source: SEMTA (Oct. 1, 2014).

Exhibit D

ARB Acceptance of GHG Quantification Determination for Plan Bay Area

State of California AIR RESOURCES BOARD

EXECUTIVE ORDER G-14-028

Association of Bay Area Governments' (ABAG) and Metropolitan Transportation Commission's (MTC) Sustainable Communities Strategy (SCS) ARB Acceptance of GHG Quantification Determination

WHEREAS, the Sustainable Communities and Climate Protection Act of 2008 ((Chap. 728, Stats. 2008) Senate Bill 375, or SB 375, as amended) requires each California Metropolitan Planning Organization (MPO), as part of its Regional Transportation Plan (RTP) planning process, to develop a Sustainable Communities Strategy (SCS) or an Alternative Planning Strategy (APS) that meets regional greenhouse gas (GHG) emission reduction targets (targets) set by the Air Resources Board (ARB or Board);

WHEREAS, SB 375 also recognizes ARB's target-setting responsibility as a recurring process, requiring ARB to update the targets every eight years and permitting target updates every four years;

WHEREAS, on September 23, 2010, the Board set targets for the ABAG/MTC region of 7 percent per capita reduction from 2005 by 2020, and 15 percent per capita reduction from 2005 by 2035;

WHEREAS, in March 2013, ABAG/MTC published a draft Regional Transportation Plan/Sustainable Communities Strategy (RTP/SCS), known as Plan Bay Area, for 2040 that stated it would achieve the region's GHG targets with a 10 percent per capita reduction from 2005 by 2020 and a 16 percent per capita reduction from 2005 by 2035;

WHEREAS, ARB staff performed a technical evaluation of the SCS in the draft Plan Bay Area based on ARB's technical methodology for evaluating an SCS (published in July 2011);

WHEREAS, ARB staff's evaluation showed that ABAG/MTC used technical methodologies that would accurately quantify GHG reductions from the SCS in the draft Plan Bay Area;

WHEREAS, ARB staff evaluated key performance indicators that support ABAG/MTC's determination that the SCS in the draft Plan Bay Area would achieve the region's GHG targets;

WHEREAS, ARB staff's evaluation showed that ABAG/MTC's SCS in the draft Plan Bay Area, if implemented, would meet the GHG targets that the Board established for the region for 2020 and 2035;

http://www.arb.ca.gov/cc/sb375/mtc_exec_order.pdf

WHEREAS, ARB staff presented an informational item on ABAG/MTC's SCS to the Board at its June 27, 2013 public meeting;

WHEREAS, during the public discussion of this item at its June 2013 meeting, the Board acknowledged that several of Plan Bay Area's Climate Policy Initiatives will provide useful data for future analysis;

WHEREAS, in response to comments from the public, stakeholders, ABAG Executive Board members, and MTC Commissioners, ABAG/MTC staff made minor modifications to the draft Plan Bay Area which did not significantly change the GHG emission reduction results;

WHEREAS, these proposed changes were presented at public meetings held by ABAG/MTC on June 14, 2013 and July 12, 2013;

WHEREAS, the ABAG Executive Board and MTC Commissioners adopted the final Plan Bay Area as revised at its public meeting on July 18, 2013;

WHEREAS, ABAG/MTC submitted the final Plan Bay Area containing the final SCS to ARB on January 6, 2014 and provided the final data table on February 18, 2014 in support of its GHG quantification determination of a 10 percent per capita reduction by 2020 and a 16 percent per capita reduction by 2035, as required by California Government Code section 65080(b)(2)(J)(ii);

WHEREAS, ARB staff reviewed both the draft SCS and subsequent modifications to the SCS contained in the adopted 2013-2040 Plan Bay Area;

WHEREAS, the modifications adopted by the ABAG Executive Board and MTC Commissioners as part of the final Plan Bay Area are minor, and do not change the underlying technical land use and transportation assumptions of the SCS or its GHG quantification methodology, and does not significantly change the GHG reduction results demonstrated by the draft SCS for 2020 and 2035;

WHEREAS, ARB staff's technical review of ABAG/MTC's GHG reduction quantification is contained in Attachment A, "Technical Evaluation of Greenhouse Gas Emissions Reduction Quantification for the Association of Bay Area Governments' and Metropolitan Transportation Commission's SB 375 Sustainable Communities Strategy" dated April 2014;

WHEREAS, section 65080(b)(2)(J)(ii) of the California Government Code calls for ARB to accept or reject the MPO's determination that the strategy submitted would, if implemented, achieve the GHG emission reduction targets established by the Board;

http://www.arb.ca.gov/cc/sb375/mtc_exec_order.pdf

WHEREAS, the California Health and Safety Code sections 39515 and 39516 delegate to the Board's Executive Officer the authority to act on behalf of the Board in this manner;

NOW, THEREFORE, BE IT RESOLVED that pursuant to section 65080(b)(2)(J)(ii) of the California Government Code, the Executive Officer hereby accepts ABAG/MTC 's quantification of GHG emissions reductions from the final SCS adopted by the ABAG Executive Board and MTC Commissioners on July 18, 2013, and the MPO's determination that the SCS would, if implemented, achieve the 2020 and 2035 GHG emission reduction targets established by ARB.

NOW, THEREFORE, IT IS ORDERED that ARB staff is directed to forward this executive order to the ABAG Executive Board, the MTC Commission, and the ABAG and MTC Executive Directors.

Executed at Sacramento, California, this 64 day of 401/2014.

Executive Officer

"Technical Evaluation of Greenhouse Gas Emissions Reduction Quantification for the Association of Bay Area Governments' and Metropolitan Transportation Commission's SB 375 Sustainable Communities Strategy" April 2014 Exhibit E

Written Acknowledgement of Notice and Obligations

Office of Community Investment and Infrastructure (Successor to the San Francisco Redevelopment Agency)

One South Van Ness Avenue San Francisco, CA 94103 415.749.2400

EDWIN M. LEE, Mayor

Mara Rosales, Chair Marily Mondejar Darshan Singh Miguel Bustos

Tiffany Bohee, Executive Director

February 11, 2015

David Kelly, Esq. Golden State Warriors 1011 Broadway 126-0172015-014

Oakland, CA 94607

Acknowledgement of the GSW Arena, LLC (GSW) Intent to Seek Certification Under the Jobs and Economic Improvement Through Environmental Leadership Act of 2011

Dear Mr. Kelly:

The Office of Community Investment and Infrastructure of the City and County of San Francisco ("OCII"), as lead agency for the proposed Golden State Warriors Arena Project (the "Project") in San Francisco, California, acknowledges that it has been notified of GSW's intent to apply for certification of the Project as a "Leadership Project" under the Jobs and Economic Improvement through Environmental Leadership Act of 2011 (the "Act"). Public Resources Code section 21178 et seq.

OCII further acknowledges that, as part of the certification process, GSW is obligated to enter into an agreement with OCII establishing the requirements of Public Resources Code sections 21183(d), (e), and (f), and that the certification under the Act entitles the Project to streamlined environmental review and requires the lead agency to prepare an administrative record in accordance with the requirements of Public Resources Code section 21186.

As the Executive Director for OCII, I am authorized to make the above acknowledgement on behalf of OCII.

Sincerely

Executive Director

DEN STANK

February, 5, 2015

Tiffany Bohee
Office of Community Investment and Infrastructure ("OCII")
ISouth Van Ness Avenue, 5th Floor
San Francisco, CA 94103

Re: Event Center and Mixed-Use Development at Mission Bay Blocks 29-32

Dear Ms. Bohee:

I write on behalf of GSW Arena LLC ("GSW"), an affiliate of Golden State Warriors, LLC (which owns and operates the Golden State Warriors National Basketball Association (NBA) team), the project sponsor of that certain proposed event center and mixed-use development project located on Blocks 29-32 in the Mission Bay South Redevelopment Plan Area of San Francisco (the "Project"). GSW wishes to confirm to the Office of Community Investment and Infrastructure (OCII) in its capacity as the lead agency for the approval of the Project GSW's agreement to the following items, all of which are conditions of qualifying for the Project's treatment as a "leadership project" under the Jobs and Economic Improvement Through Environmental Leadership Act of 2011, as amended (The "Act") California Public Resources Code Sections 21178 et. seq. By this letter, GSW acknowledges and agrees to its obligations under the Act as set forth in California Public Resources Code Sections 21183 (d), (e) and (f).

Accordingly, as required by Public Resources Code § 21183(d), GSW agrees that all mitigation measures required pursuant to CEQA to certify the Project under the Act shall be conditions of approval, and those conditions will be fully enforceable by OCII or another agency designated by OCII. GSW agrees that all environmental mitigation measures required to certify the Project under the Act will be monitored and enforced by OCII for the life of the obligation.

As required by Public Resources Code § 21183(e), GSW agrees to pay the costs of the Court of Appeal in hearing and deciding any case, including payment of the costs for the appointment of a special master if deemed appropriate by the court, in a form and manner specified by the Judicial Council, as provided in the Rules of Court adopted by the Judicial Council pursuant to the Act.

NBA

GOLDEN STATE WARRIORS • NATIONAL BASKETBALL ASSOCIATION 1011 Broadway • Oakland, CA 94607-4019 510.986.2200 • 1-888-GSW-HOOP • warriors.com Office of Community Investment and Infrastructure ("OCII") <February 5, 2015> Page 2

As required by Public Resources Code § 21183(f), GSW agrees to pay the costs of preparing the administrative record for the Project, in a form and manner specified by OCII, concurrent with review and consideration of the Project pursuant to CEQA and the Act.

In entering into this letter agreement, GSW acknowledges and agrees that this agreement will have no impact on the on-going process under the California Environmental Quality Act (CEQA). In order to comply with CEQA and give the public and decision-makers the opportunity to be aware of the environmental consequences of the Project, and to fully participate in the CEQA process, the Parties acknowledge that OCII has no obligation to approve, and GSW has no obligation to develop, the Project unless and until the Parties have negotiated, executed and delivered mutually acceptable agreements based upon information produced from the CEQA environmental review process and any other public review and hearing processes, subject to all applicable governmental approvals. OCII retains the absolute, sole discretion to: (1) modify the Project as OCII may, in its sole discretion, deem necessary to comply with CEQA; (2) select other feasible alternatives and/or impose mitigation measures to avoid or minimize significant environmental impacts, which this agreement; (3) balance the benefits of the Project against any significant environmental impacts prior to taking final actions, if such significant impacts cannot otherwise be avoided; and/or (4) determine not to proceed with the Project.

GSW Arena LLC

By: Wy Its: General Counsel

Acknowledged and Agreed to by:

Tiffany Bohee, Director of

Office of Community Investment and Infrastructure

ce: City of San Francisco Dept. of City Planning

101875308.5

Exhibit F

Wage and Investment Documentation

Mortenson CLARK

180 Howard Street, Suite 1200 San Francisco, CA 94105 CA License No. 996476

February 12, 2015

Golden State Warriors Attn: David Kelly

Re: Golden State Warriors

Event Center and Mixed-Use Development

Per your request, we are confirming published prevailing wage information for select field craft labor anticipated to work on the Golden State Warriors Event Center and Mixed-Use Development in Mission Bay, San Francisco. We intend to contract with contractors and to pay wages as negotiated through appropriate collective bargaining agreements for non-artisan on site craft labor These wages are anticipated to meet or exceed the prevailing wages for job classifications as set forth by California's Department of Industrial Relations ("DIR").

Below is a subset of job classifications and median journeyman wages from the DIR Database for 2014-2 that will comprise a majority of the non-artisan on site construction jobs created by the project:

Trade Classification	Z014-2 Rates
Construction Laborer (Group 3) - Area 1	\$48.27
	\$68.07
Carpenter - Area 1	\$53.66
Cement Mason and Concrete Finisher	\$87.73
Electrician - Inside Wireman	\$66.70
Operating Engineer - Group II	\$108.44
Plumber	
Sheet Metal Worker	\$91.64
Steel Erector - Group II	\$68.31

These values represent base wages plus health and welfare and other employer paid benefits for San Francisco County based on the SFR-2014-2 Determination.

These rates were developed using the published information from the 2014-2 general prevailing wage journeymen determinations made by the Director of DIR.

If you have any questions, please let me know.

Sincerely, Mortenson/Clark, a Joint Venture

Steven J. Dell'Orto Senior Vice President **Exhibit G**

Greenhouse Gas Emissions Methodology

Application for CEQA Streamlining: GHG Emissions Methodology and Documentation Event Center and Mixed-Use Development Mission Bay South Redevelopment Plan Area Blocks 29-32, San Francisco, California

> Prepared for: Golden State Warriors, LLC Oakland, California

Prepared by: ENVIRON International Corporation San Francisco, California

Date: February, 2015

Project Number: 03-31144A

Application for CEQA Streamlining GHG Emissions Methodology and Documentation

Contents

-		Page
	A. C. Santian	1
1.	Introduction	1
1.1.	Project On the Associated CSW Onkland Headquarters	2
1.2.	Oracle Arena and GSW Oakland Headquarters	. 3
1.3.	One-Time Emissions	3
1.4.	Emissions Sectors	
2.	Oracle Arena and GSW Oakland Headquarters Operational Emissions	4 4
2.1.	Energy	4
2.1.1.	Electricity	5
2.1.2.	Natural Gas	5
2,2.	Mobile Sources	6
2.2.1.	Employee Trips	6
2.2.2.	Spectator Trips	7
2.2.3.		7
2.2.4.	Opposing Team Bus Trips	7
2.2.5.	Delivery Trips	. 7
2.3.	Waste	
2.4.	Water	8
2.5.	Area Sources ,	
3.	Project Operational Emissions	9
3.1.	Energy	10
3.1.1.		. 10
3.1.2.	·	. 11
3.2.	Mobile	11
3.3.	Waste	12
3.4.	Water	12
3.5.	Area Sources	12
3.6.	Stationary Sources	12
4.	One-Time Emissions	13
4.1.	Construction	10
4.1.1.	Offroad Equipment	1;
4.1.2.		
5.	Comparison of Project to Oracle Arena and GSW Headquarters Emissions	14
5.1.	Project Sustainability Commitments	1:
5.2.	Project GHG Reduction Strategies	1.

ENVIRON

Content

Acronyms and Abbreviations

AB32:

(California) Assembly Bill 32 (Nuñez)

AB900:

(California) Assembly Bill 900 (Buchanan)

ACC:

Advanced Clean Cars

ARB:

(California) Air Resources Board

BART:

Bay Area Rapid Transit

BTU:

British Thermal Unit

BAAQMD:

Bay Area Air Quality Management District

CalEEMod®:

California Emissions Estimator Model

CAPCOA:

California Air Pollution Control Officers Association

CEC:

California Energy Commission

CEQA:

California Environmental Quality Act

CFR:

Code of federal regulations

CH₄:

Methane

CO2e:

Carbon dioxide equivalents

DU:

dwelling unit

Draft EIR:

Draft Environmental Impact Report

EIR:

Environmental Impact Report

g/hp-hr:

gram per horsepower-hour

g/mile:

gram per mile gram per second

g/s: GHG:

Greenhouse Gases

GSF:

gross square foot

GSW:

Golden State Warriors

GWP:

Global warming potential

kBTU:

thousand British thermal units

kWh:

kilowatt-hour

m:

meter

miles/day:

miles per day miles per hour

mph: Mgal:

million gallons

MT:

metric tonne

N₂O:

Nitrous oxide

NBA:

National Basketball Association

NOP:

Project Notice of Preparation

Pacific Gas and Electric Company

PG&E: PRC

Public Resources Code

RPS:

Renewable Portfolio Standard

SB743:

(California) Senate Bill No. 743 (Steinberg)

SOV:

single occupancy vehicle

sq ft:

square foot

.

tons per day

tons/day: USEPA:

United States Environmental Protection Agency

g/veh-hr:

grams per vehicle-hour

WetCat:

Water Energy Team of the Climate Action Team

VMT:

vehicle miles traveled

vr:

vear

1. Introduction

The Event Center and Mixed-Use Development Project located on Blocks 29-32 within the Mission Bay South Redevelopment Plan Area of San Francisco (herein referred to as the "Project") has applied for California Environmental Quality Act (CEQA) judicial streamlining under Public Resources Code (PRC) Section 21178 et seq. In support of the Application, ENVIRON quantified both direct and indirect greenhouse gas emissions associated with the Project's operation, including ongoing emissions reductions associated with transportation and building energy use, to show the Project meets the requirement for no "net additional emission of greenhouse gases [GHG], including greenhouse gas emissions from employee transportation" [California PRC §21183(c)].

ENVIRON quantified potential emissions for the Project as well as those associated with the existing uses at the Oracle Arena and the Golden State Warriors (GSW) Headquarters and practice facility in Oakland to calculate the net GHG emissions associated with the Project. ENVIRON also quantified emissions reductions associated with internal trip capture made possible by the immediately adjacent office and retail uses and sustainability components of the newly constructed office, as described in Section 3 of this methodology document. Lastly, ENVIRON quantified the Project's one-time emissions due to construction. This document summarizes of the assumptions and calculation methodologies ENVIRON used to estimate GHG emissions.

Throughout this report, GHG emissions are reported in units of metric tons of carbon dioxide equivalents (MT CO₂e). Carbon dioxide equivalents are emissions of carbon dioxide, methane (CH₄), and nitrous oxide (N_2O), weighted by the global warming potentials (GWP) from Title 40 of the Code of Federal Regulations (CFR), Part 98, Table A-1, as referenced by the California Mandatory Reporting Rule for GHG (Title 17 of the California Code of Regulations, §§95100-95158). GHG emissions are quantified for this Project, existing uses at the Oracle Arena and the current GSW Headquarters in Oakland, and one-time emissions associated with construction.

1.1. Project

The Project on Blocks 29-32 consists of development of a new arena for the National Basketball Association (NBA) team the Golden State Warriors (GSW), who currently play at the Oracle Arena in Oakland, California. Currently, the Project site is used for surface parking. As described in the Application for judicial streamlining, there are immediately adjacent office and retail land uses. The calculations of the GHG emissions for the Project include emissions associated with the event center and reductions associated with transportation and building energy use. Table 1 shows the proposed land uses at Mission Bay Blocks 29-32.

Table 1. Project Land Uses at Mission Bay Blocks 29-32

Land Use	Square Footage
Event Center	750,000
GSW Office Space	25,000
Office Space	580,000
Retail Space ¹	125,000
Parking and Loading	234,411

The GSW are assumed to play 47 games per year at the Mission Bay Event Center, which is the number of pre-season, regular season, and post-season home games in the 2013-2014 season. This represents an average good year as the GSW made the first round of playoffs (including 3 pre-season home games). Home games can range from a minimum of 43 (including 2 pre-season games) to a maximum of 60 (including 3 pre-season games and 16 post-season games) if the GSW continue through a seven-game championship.

Currently, construction of the Project is scheduled to be completed in late 2017. Thus, for the purposes of this analysis the first operational year of the Project is assumed to be 2017. A GHG emissions inventory is also presented for each year from 2017 to 2035. From 2017 to 2035, emissions change each year due to the phase-in of the Renewable Portfolio Standard from 2017 to 2020 and CO₂e emission factors resulting from an improved vehicle fleet as documented by ARB guidance for AB900 projects.

1.2. Oracle Arena and GSW Oakland Headquarters

The current GSW Headquarters are located at 1011 Broadway in Oakland, California. The calculations of potential Project GHG emissions at the Mission Bay Event Center would deduct a portion of the existing GHG emissions from the Oracle Arena and the existing GSW Headquarters from the future GHG calculations. The portion deducted is associated with the relocation of all the GSW games, the GSW Headquarters and practice facility in Oakland, and fifty percent (50%) of the non-GSW events currently taking place at the Oracle Arena, as described in the Application.

Methodologies for quantifying GHG emissions associated with all events at the Oracle Arena and the existing GSW Headquarters in Oakland are presented in Section 2. Methodologies for quantifying GHG emissions associated with the Mission Bay Event Center, emission reductions due to the Project, and emissions from the remaining 50% of non-GSW events at Oracle Arena are presented in Section 3.

FNVIRON

¹ Proposed retail uses are approximately 51,500 GSF sit-down restaurant, 11,000 quick-service restaurant, and 62,500 GSF soft goods retail including food retail.

Location	Square Footage
oracle Arena SSW Headquarters management offices and	approx. 500,000
GSW Headquarters (management offices and practice facility)	16,0001

1.3. One-Time Emissions

Construction of the Project will generate "one-time" emissions, that is, discrete emissions that are not associated with ongoing Project operation. These emissions are quantified and disclosed for the Project. Methodologies for quantifying construction GHG emissions are detailed in Section 4.

1.4. Emissions Sectors

For the Project in Mission Bay and the Oracle Arena and GSW Oakland Headquarters, emissions are quantified and presented for the following sectors:

Table 3. Emissions Sectors

Sector	Description					
Energy	Emissions from purchased electricity and natural gas					
Mobile sources	Emissions from on-road vehicle traffic					
Waste	Emissions from solid waste treatment					
Water	Indirect GHG emissions from the treatment and delivery of fresh water and wastewater treatment					
Area sources	Emissions from landscaping equipment					
Stationary Sources	Emissions from emergency generators at the Project					

Detailed calculations of one-time emissions associated with construction and emissions in the above sectors are presented in Exhibit H: Greenhouse Gas Emissions Calculations of the Application.

2. Oracle Arena and GSW Oakland Headquarters Operational **Emissions**

The estimated GHG emissions from Oracle Arena and GSW Oakland Headquarters operations at the existing site are shown in Table 4. Total GHG emissions are 14,930 MT CO₂e/year, with 14,304 MT CO₂e/year originating at the Oracle Arena and the remaining 625 MT CO₂e/year from the GSW Headquarters (numbers do not add to 14,930 MT CO₂e/year due to rounding). The GSW provided site-specific data for energy use and transportation, as described in the respective subsections below. For both land uses, mobile sources are the largest contributor of GHG emissions, followed by energy use.

Table 4: Oracle Arena and GSW Oakland Headquarters 2017 GHG Emissions

ubic 47 Green	Emission Source									
GHG Emissions [MT CO₂e/year]	Energy	Mobile	Area	Waste	Water	Total				
Oracle Arena	1,413	12,284	0.010	91	517	14,304				
(47 games and 42 events)	258	365	0.0.0	2	1	625				
GSW Headquarters Total	1.671	12,648	0.010	92	518	14,930				

No stationary sources such as emergency generators are considered for the Oracle Arena and GSW Oakland Headquarters. This is a conservative approach.

The GHG emissions from energy use and mobile sources were evaluated between 2017 and 2035. Detailed calculations for the Oracle Arena and GSW Oakland Headquarters emission calculations are in Exhibit H: Greenhouse Gas Emissions Calculations of the Application.

2.1. Energy

Energy emissions from Oracle Arena and GSW headquarters land uses were estimated using similar methodology to that of the California Air Resources Board (ARB) in evaluating GHG emissions from the Apple Campus 2 project in Cupertino, California ("ARB Determination for Apple Campus 2"). The ARB emissions methodology was developed to assess GHG emissions in support of a CEQA judicial streamlining application under California Assembly Bill 900 (AB900). The energy emissions estimates consider emissions from two processes, electricity generation and natural gas combustion, with further details in Section 2.1.1 and 2.1.2 below.

2.1.1. Electricity

Determining GHG emissions from electricity generation requires an emission factor correlating MWh of electricity consumed to MT CO2e. The emission factor for GHG from electricity production for customers of the Pacific Gas and Electric Company (PG&E) is based on the

Introduction

Greenhouse gas emissions associated with the GSW Headquarters are based on actual consumption data and not the building square footage.

¹ ARB. 2011. Attachment A to letter from Lynn M. Terry to Ken Alex. June 14. Available online at http://opr.ca.gov/docs/ARBDeterminationAppleCampus2.pdf

PG&E report "Greenhouse Gas Emission Factors: Guidance for PG&E Customers." All calculations use the PG&E 2017 through 2020 emission factors for electricity production. The CH₄ and N₂O emission factors are the same as those used in the California Air Pollution Control Officers Association (CAPCOA)-developed model for land uses, California Emissions Estimator Model, version 2013.2.2 (CalEEMod®).³

Electricity demand for the Oracle Arena is estimated based on historical CalEEMod® energy intensities for the Arena land use, which reflect 2005 Title 24 standards. The GSW provided historical actual electricity usage data for the GSW Headquarters.

Emissions from electricity use are the product of the historical annual electricity use and the GHG emission factor.

2.1.2. Natural Gas

Emission factors for CO_2 , CH_4 , and N_2O from natural gas combustion were taken from $CalEEMod^{\oplus}$.

Natural gas demand for the Oracle Arena is estimated based on historical CalEEMod® energy intensities for the Arena land use, which reflect 2005 Title 24 standards. As Oracle Arena was originally opened in 1966 and last renovated in 1997, it is likely that energy use is understimated here. Natural gas demand for the GSW Headquarters is based on historical actual usage data provided by the GSW.

Emissions from natural gas use are the product of the historical annual natural gas use and the GHG emission factors from CalEEMod®.

2.2. Mobile Sources

Mobile source emissions for the Oracle Arena and GSW headquarters are considered separately for GSW Headquarters employees, Oracle Arena employees, and spectators at the Oracle Arena, as discussed in the subsections below. Trip rate estimates are based on staff and spectator head counts. Trip lengths are the default values from CalEEMod[®] except for event spectator trips, which are longer, as discussed below. CO₂e emission factors are from the ARB guidance document "Statewide Emission Factors For Use With AB900 Projects."

Pacific Gas and Electric Company. 2013. Greenhouse Gas Emission Factors: Guidance for PG&E Customers. April. Available online at: http://www.pge.com/includes/docs/pdfs/shared/environment/calculator/pge_ghg_emission_factor_info_sheet.pdf. Application for CEQA Streamlining GHG Emissions Methodology and Documentation

2.2.1. Employee Trips

ENVIRON estimated GHG emissions from employees working at the GSW Headquarters and as part of non-event operations at the Oracle Arena. The actual count of full-time employees (not including vendor and event staff on event days) at the Oracle Arena was used. The number of employees at the GSW Headquarters in Oakland was based on the Project Notice of Preparation (NOP) from November 2014.

Bay Area Census data from 2013 show that 78% of commuters drive to work, the employee driving rate assumed for Oracle Arena staff. The Bay Area Census data also show that the single occupancy vehicle (SOV) rate is 86% and the average local carpool rate is 14%, so 14% of Oracle Arena employees were assumed to carpool in 2-person carpools. The GSW provided a driving rate of 85% for the Headquarters employees. The GSW also provided a carpool rate of 6%, assumed to be of 2-person carpools.

Employees were assumed to take one round-trip commute trip and one round-trip non-commute trip per day. The CalEEMod® default trip length of 9.5 miles was used for the employee commute trips. The non-commute trip length is assumed to be 3 miles.

The emissions for employee trips are the product of employee trips per year, length per trip, and the ARB CO₂e emission factor.

2.2.2. Spectator Trips

The GSW provided average count of game and non-game event spectators. The trip length for all spectators (game and non-game event) was developed based on the zip codes of GSW season ticket-holder addresses. The trip length of 25 miles used for event spectators is the weighted-average of distances to each Bay Area county represented by the season ticket-holder addresses.

The GSW estimated that 2,000 of the total spectators per game event took public transit or taxis. In the absence of survey or public transit data, ENVIRON assumed the count of single-occupancy vehicles and 3-person carpools based on the capacity of the Oracle Arena parking lot. About four times as many spectators attend events as there are parking spaces. Of the spectators driving to game events, ENVIRON assumed that 20% of spectators drive in single-occupancy vehicles while the remaining spectators drive in carpools of 3 people. ENVIRON also conservatively assumed that all non-game event spectators drive, and that 20% of these spectators drive in single-occupancy vehicles while the remaining carpool at a density of 3 people per vehicle.

³ CalEEMod® calculates annual GHG emissions which can be used in support of analyses in environmental documents such as Environmental Impact Reports (EIRs) and Negative Declarations used to support a California Environmental Quality Act (CEQA) evaluation. CalEEMod® utilizes widely accepted models for emission estimates combined with appropriate default data that can be used if site-specific information is not available. These models and default estimates use sources such as the United States Environmental Protection Agency (USEPA) AP-42 and sefundation factors, California Air Resources Board (ARB) onroad and offroad equipment emission models such as the EMIssion FACtor 2011 model (EMFAC2011) and the Offroad Emissions Inventory Program model (OFFROAD), and studies commissioned by California agencies such as the California Energy Commission (CEC) and California et right in the Interval agencies such as the California Energy Commission (CEC) and California et right in the Interval agencies and the California Energy Commission (CEC) and California et right in the Interval agencies as the California Energy Commission (CEC) and California et right in the Interval agencies and the California Energy Commission (CEC) and California et right in the Interval agencies and the Interval agencies are the Interval agencies and the Interval agencies and the Interval agencies and the Interval agencies are the Interval agencies and the Inte

City of Oakland. 2014. Oakland Coliseum Area Specific Plan Draft Environmental Impact Report, Volume II.

Available online at: http://www2.oaklandnet.com/Government/o/PBN/OurOrganization/PlanningZoning/OAK048830

⁵ Bay Area Census. 2013. Selected Census Data from the San Francisco Bay Area. Available online at http://www.bayareacensus.ca.gov/bayarea.htm

Application for CEQA Streamlining GHG Emissions Methodology and Documentation

The emissions for event spectator trips are the product of spectator trips per year, trip length, and the ARB CO₂e emission factor.

2.2.3. Vendor and Event Staff Trips

Event staff are those employees who work only on game days and for non-game events at the Oracle Arena. Vendors are contractors who provide services at games and non-game events. The annual number of vehicle trips by vendor and event staff is based on number of vendors at each event and total number of event days per year.

Vendors and event staff are assumed to drive and carpool at the average local rates in the Bay Area Census data, that is, a driving rate of 78% and a carpool rate of 14%. Carpools are assumed to be of 2 people per vehicle.

The trip length for vendor and event staff trips, 9.5 miles, is the default commercial-work trip length in CalEEMod® for the Bay Area.

The emissions for vendor and event staff trips are the product of employee trips per year, trip length, and the ARB CO₂e emission factor.

2.2.4. Opposing Team Bus Trips

Typically, the opposing team visiting to play against the GSW stays in a hotel in San Francisco. The opposing team takes a bus to the Oracle Arena for each game, a trip of approximately 17.5 miles. On average, there are 1.5 bus trips per game based on information from the GSW.

The emissions for opposing team bus trips are the product of opposing team bus trips per year, trip length, and the ARB CO₂e emission factor for the fleet mix.

2.2.5. Delivery Trips

On average, there are about 8 deliveries per work day to the GSW Headquarters. The trip length for delivery trips is 7.3 miles, the default commercial-nonwork trip length in CalEEMod®.

The emissions for delivery trips are the product of delivery trips per year, trip length, and the ARB CO_2e emission factor.

2.3. Waste

Solid waste treatment releases GHG, primarily methane, as a result of decomposition. The ARB developed an emission factor for CO₂e from solid waste disposal in the ARB Determination for Apple Campus 2.º ENVIRON uses the same emission factor in this analysis, and shows its derivation in Exhibit H: Greenhouse Gas Emissions Calculations of the Application. The GHG emission factor for waste is 0.155 MT CO₂e/MT waste.

The annual waste generation rate for the Oracle Area on a square footage basis is 1.29 tons/1000 square feet per year, based on the Sacramento Entertainment and Sports Center & Related Development EIR cited in the GSW Event Center November 2014 NOP. GHG

Oracle Arena and GSW Oakland Headquarters Operational Emissions

ENVIRON

Application for CEQA Streamlining GHG Emissions Methodology and Documentation

emissions from solid waste at the Oracle Arena are the product of the amount of waste generated per year and the CO₂e emission factor for solid waste.

The GSW provided an estimate for the amount of solid waste generated at the GSW Headquarters as well as the amount of diverted waste. GHG emissions from GSW Headquarters-generated solid waste are the product of the amount of waste generated per year less the amount diverted and the CO₂e emission factor for solid waste.

2.4. Water

Water treatment and transport results in indirect emissions of GHG. In the ARB Determination for Apple Campus 2, ARB developed a CO₂e emission factor for water use based on a study by the University of California on behalf of the California Public Utilities Commission and the California EPA's Water Energy Team of the Climate Action Team (WetCat). The emission factor accounts for emissions from fresh water supply, treatment, distribution, and wastewater treatment. The GHG emission factor for water use is 2.255 MT CO₂e/Mgaſ.

The water use rate for the Oracle Arena is based on data from the "Commercial and Institutional End Uses of Water" report by the American Water Works Association Research Foundation. The use rate is multiplied by the square footage of the Oracle Arena to get the usage in gallons per year. The GSW provided the annual water use for the GSW Headquarters.

GHG emissions from water usage are the product of water used per-year and the CO₂e emission factor for water use.

2.5. Area Sources

The Project includes area sources such as landscaping equipment. GHG emissions from area sources were estimated using CalEEMod® based on the type and size of land uses associated with the Oracle Arena and the GSW Oakland Headquarters.

Oracle Arena and GSW Oakland Headquarters Operational Emissions

8

ENVIRON

California Air Resources Board. 2012. Email between Webster Tasat of the California Air Resources Board and Catherine Mukal of ENVIRON, 20 November 2012.

⁷ American Water Works Association Research Foundation, 2000. Commercial and Institutional End Uses of Water.

3. Project Operational Emissions

The estimated Project GHG emissions from future operations at the Project site at full build-out are shown in Table 5. Total GHG emissions in the first operational year, 2017, are 19,133 MT CO₂e/year, with 18,384 MT CO₂e/year originating from the new Event Center at Mission Bay and 2,939 MT CO₂e/year from remaining events at Oracle Arena. Credits due to Energy Efficiency and Trip Linking account for a reduction of 2,008 MT CO₂e/year. For all land uses, mobile sources are the largest contributor of GHG emissions, followed by energy use.

Table 5: Project GHG Emissions in 2017 (MT CO2e/year)

GHG Emissions			Emissi	on Source		
[MT CO₂e/year]	Energy	Mobile	Area	Waste	Water	Generators
Oracle Arena (21 events)	333	2,242	0.0023	21	122	-
Mission Bay Event Center (47 games and 161 events)	748	16,741	0.014	136	23	106
GSW Office Space	74	104	0.00047	4.6	0.66	
Parking and Loading	446	-	0.0090	-	-	
Credit due to Energy Efficiency	-646	-	-		-	-
Credit due to Trip Linking		-1,362	- `	1.5 -	· <u>-</u>	-
Sub-Total	956	17,726	0.026	162	145	106
Total	19,095					

The GHG emissions from energy use and mobile sources associated with the Project were evaluated at full build-out between 2017 and 2035. Credits due to energy efficiency and trip linking are also calculated for these years, as discussed below.

ENVIRON calculated the Project emissions using largely the same methodology as described in Section 2. There are additional sources of GHG emissions in the Project, namely stationary sources, which are discussed in Section 3.6.

Detailed calculations for Project emissions are in Exhibit H: Greenhouse Gas Emissions Calculations of the Application.

3.1. Energy

The energy emissions estimates consider emissions from two processes, electricity generation and natural gas combustion.

Project emissions from electricity are the sum of the emissions from the new event center, the GSW office space, and the Oracle Arena. Though the Oracle Arena will no longer host GSW games, it is assumed that approximately 50% of the non-game events will still occur at the Oracle Arena, or 24% of a typical year's game and non-game events will still occur at the Oracle Arena. Thus, emissions calculations for the remaining non-game events at Oracle Arena use a 24% scaling factor to account for this reduction in number of events. An emission reduction from the electricity use of the Office Tower is also applied; this is discussed further below.

3.1.1. Electricity

The GHG emission factors for electricity use change over time due to the California Renewable Portfolio Standard (RPS), a program designed to meet statewide GHG reduction targets. The RPS requires grid electricity to come from 33% renewable sources by 2020. ENVIRON used emission factors for 2017 through 2020 for electricity from the PG&E report "Greenhouse Gas Emission Factors: Guidance for PG&E Customers.[™] The PG&E emission factors for electricity production range between 0.158 and 0.131 MT CO₂e/MWh between 2017 and 2020.

SSR, Sustainable Design and LEED consultants to the GSW, provided the electricity demand for the Event Center. Emissions from arena electricity use are the product of the energy demand rate and the GHG emission factor.

Emissions from electricity use at the Oracle Arena were calculated using the same methods described in Section 2; however, annual electricity use was scaled down to 24% of the existing arena. This scaling accounts for the percentage of total events that will continue to occur at the Oracle Arena.

Finally, the proposed office towers of the Project will generate lower GHG emissions due to greater building energy efficiency associated with the LEED Gold certification when compared to a similarly sized office buildings that are code-compliant. Emission reduction credits from the office electricity use are calculated by subtracting the code-compliant office energy emissions from the immediately adjacent office energy emissions. Code-compliant office energy emissions were calculated in CalEEMod® assuming 2013 Title 24 standards. Immediately adjacent office energy emissions were calculated by multiplying the annual electricity use by the PG&E emission factor.

3.1.2. Natural Gas

As was done in the Oracle Arena and GSW Oakland Headquarters calculations, emission factors for CO_2 , CH_4 , and N_2O from natural gas combustion were taken from CalEEMod® defaults. SSR, Sustainable Design and LEED consultants to the GSW, provided the natural gas demand for the Event Center. Emissions from the Event Center and GSW office space natural gas use are the product of the natural gas demand rate and the GHG emission factor.

http://www.pge.com/includes/docs/pdfs/shared/environment/calculator/pge_ghg_emission_factor_info_sheet.pdf

ENVIRON

Pacific Gas and Electric Company. 2013. Greenhouse Gas Emission Factors: Guidance for PG&E Customers. April. Available online at

Application for CEQA Streamlining GHG Emissions Methodology and Documentation

Finally, emissions from natural gas use at the Oracle Arena were calculated using the same methods described in Section 2; however, annual natural gas use was scaled down by 24%. This scaling accounts for the percentage of total events that will continue to occur at the Oracle Arena.

3.2. Mobile

Mobile source emissions for the Project are based on daily vehicle trip data provided by Adavant Consulting, the traffic consultant for the Project. One-way vehicle trips are provided separately at the Mission Bay Event Center for weekdays and weekends, and for various event scenarios: no events, basketball game event, and convention event. ENVIRON assumed the number of home games (assumed to be the same as the 2013-2014 season, 47) are distributed evenly between weekdays and weekends over a year. Trip generation associated with 45 concerts and 55 family shows distributed throughout the year is approximated by the basketball event scenario (assumes 55 events occur on weekends and 45 occur on weekdays). 61 convention events in a year are assumed to occur on weekdays, while the remaining days (157) are assumed to be "no event" days.

The one-way trip length to the Event Center is conservatively assumed to be 25.2 miles, which is based on addresses of GSW season ticket holders. The average length of a trip to the GSW office, 8 miles, is the average CalEEMod default value for offices.

Oracle Arena trips to account for non-game events that will still take place at that arena are calculated similarly to the calculations described in Section 2; however, a 50% scaling factor is applied to the spectator, vendor, and event staff trips to account for 50% of the non-game events (or 24% of total events) that will take place there.

CO₂ emission factors are from ARB's Statewide Emission Factors For Use With AB900 Projects. The emissions for each event scenario are the product of vehicle trips per year, trip length, and weighted CO2 emission factor.

Finally, the retail trips associated with the Project will result in lower GHG emissions due to internal trip capture when compared to trips generated by retail use of the same size that is not immediately adjacent to an event center. Emission reduction credits from retail trip linking are calculated by determining the difference in retail trips with and without internal trip capture. The difference can be seen in the Adavant Consulting traffic data for no event days versus event days. Emission credits were calculated by multiplying the annual reduction in vehicle miles traveled (VMT) due to internal trip capture and the CO₂ emission factor.

Emissions from the transport and processing of solid waste were calculated using solid waste generation rates were obtained from the Sacramento Entertainment and Sports Center & Related Development Environmental Impact Report (EIR) for the event center, GSW offices, and untransferred events at the existing Oracle Arena, as cited in the November 2014 NOP. Waste emissions were calculated using the same methods described in Section 2. A scaling factor of 24% was applied to waste emissions from the existing Oracle Arena to account for reduction in number of events.

Application for CEQA Streamlining GHG Emissions Methodology and Documentation

3.4. Water

As in the Oracle Arena and GSW Oakland Headquarters calculations, emissions are estimated from the energy use associated with the supply, treatment, and distribution of water, as well as wastewater treatment. The emission factor described in the calculation methodology in Section 2 was also used for this Project calculation.

Project water use includes event center and GSW office water use, water used for landscaping, and facility washdown and cleaning; these usage rates were provided by the Project Water Demand Memorandum dated November 14, 2014. Water use emissions also include those from the existing Oracle arena, scaled to 24% of the original value to include only untransferred

Emissions from water use are the product of the water use rate for each of the components described above and the emission factor.

3.5. Area Sources

The Project includes area sources such as architectural coatings and landscaping equipment. GHG emissions from area sources were estimated using CalEEMod® based on the type and size of land uses associated with the Oracle Arena and the GSW Oakland Headquarters.

3.6. Stationary Sources

Operation of standby emergency engines will result in direct emissions of GHGs: The Project includes the installation of two 1,500 kW diesel generators at the arena. Emissions are calculated as a product of engine horsepower, a CO₂ emission factor of 526 g/hp-hr based on AP-42 for large stationary diesel engines, and a limit of 50 hours of operation for routine maintenance and testing by the Bay Area Air Quality Management District (BAAQMD).

Application for CEQA Streamlining

4. One-Time Emissions

The one-time emissions from Project construction are shown in Table 6. Project construction will span 24 months, with total GHG emissions summing to 10,066 MT CO₂e. Detailed calculations for the one-time emissions due to construction are in Exhibit H: Greenhouse Gas Emissions Calculations of the Application.

Table 6: Construction Emissions

	GHG Emissions [MT CO₂e/yr]							
Emission Source	Year 1	Year 2	Total					
Offroad Equipment	3,997	1,358	5,355					
Construction Trips	2,355	2,355	4,711					
Total by Year	6,352	3,714	10,066					

4.1. Construction

Greenhouse gas emissions from construction of the Project include emissions from offroad equipment and construction trips. Construction phasing was provided by the Project construction contractor.

4.1.1. Offroad Equipment

Project-specific construction equipment inventories that include details on the type, quantity, construction schedule, and hours of operation anticipated for each piece of equipment for each construction phase were provided by the GSW Construction Team, as shown in Table 3: Construction Equipment List in Exhibit H of the Application. ENVIRON estimated GHG emissions from construction equipment using methodologies consistent with CalEEMod®. Specifically, emissions are the product of the equipment horsepower, total hours of operation, load factor, and CO₂ emission factor.

4.1.2. Construction Trips

GHG emissions from on-road construction trips were calculated using the total number of truck and worker trips provided by the GSW Construction Team, as shown in Table 5: Project Construction Trip Estimates in Exhibit H of the Application, and emission factors from ARB's EMission FACtor model (EMFAC2011) model. For haul trucks, a 20-mile one-way trip length was used, based on CalEEMod® default truck trip lengths, and for vendor trucks a 7.3-mile trip length was used, based on the regional default vendor trip length from CalEEMod®. For worker trips, the regional default trip length of 12.4 miles from CalEEMod® was used. The CO₂ emission factors were generated with the current version of the EMFAC2011, released on September 30, 2011, and updated in January 2013. The model includes updated information on California's car and truck fleets and travel activity. Emissions reported by the model were converted to units of grams of pollutant emitted per vehicle mile traveled (VMT) using the daily VMT for running emissions, or grams of pollutant emitted per trip for idling and starting emissions.

5. Comparison of Project to Oracle Arena and GSW Headquarters Emissions

The comparison of the Oracle Arena and GSW Headquarters emissions and Project emissions between 2017 and 2035 is shown in Table 7. In 2017, Project emissions exceed Oracle Arena and GSW Headquarters emissions by 4,099 MT CO₂e/year, but by 2035, with anticipated reductions from the RPS, Advanced Clean Cars (ACC), and fleet turnover, Project emissions are only 2,923 MT CO₂e/year above Oracle Arena and GSW Headquarters emissions.

The increase in Project emissions over the Oracle Arena and GSW Headquarters is small when considering the increased area and expected utilization of the Event Center. This represents a more efficient and sustainable Project given that the new Event Center will host more events on an annual basis and will allow spectators and residents to take advantage of nearby amenities and public transportation.

Table 7. Comparison of GHG Emissions between Oracle Arena and GSW HQ versus the Event Center Project, 2017 - 2035

GHG Emissions [MT CO₂e/year]¹	Oracle Arena and GSW HQ	Event Center Project	Difference
2017	15,034	19,133	4,099
2018	14,780	18,813	4,032
2019	14,527	.18,493	3,966
2020	14,253	18,139	3,886
2021	14,049	17,854	3,805
2022	13,815	17,529	3,714
2023	13,553	17,163	3,611
2024	13,348	16,879	3,530
2025	13,086	16,513	3,427
2026	12,881	16,228	3,347
2027	12,677	15,944	3,267
2028	12,502	15,700	3,198
2029	12,356	15,497	3,140
2030	12,210	15,293	3,083
2031	12,093	15,131	3,037
2032	12,006	15,009	3,003
2033	11,918	14,887	2,968
2034	11,860	14,806	2,946
2035	11,802	14,724	2,923

Application for CEQA Streamlining GHG Emissions Methodology and Documentation

While the Project emissions are higher than those at the Oracle Arena and GSW Oakland Headquarters, the GSW are committing to purchase carbon credits to offset the difference in GHG emissions.

5.1. Project Sustainability Commitments

Even though the Project anticipated event count exceeds those at the Oracle Arena by over 100 events per year, and square footage is increased by 50%, emissions are reduced by 15% per square foot in 2017. This is in no small part due to aggressive energy and transportation efficiency efforts taken by the GSW.

The Project will increase transportation efficiency by at least 10% compared to similar projects. The Project location, in close proximity to Muni Metro (adjacent to UCSF/Mission Bay Station) and Caltrain (0.7 miles to San Francisco Station), allows it to reduce on-road vehicle trips by making public transit an attractive option. The Central Subway Project will further improve public transit in the area by providing connections to downtown San Francisco with light-rail stops in South of Market, Yerba Buena, Union Square, and Chinatown. These transit centers connect the Project to the Peninsula (via bus, BART, and Caltrain), the North Bay (via bus and ferry), the East Bay (via bus, BART, and ferry), and San Francisco (via bus, Muni Metro, and BART). Exhibit C to Application provides more detail on the Project transportation efficiency.

The new Event Center will increase energy efficiency to exceed the 2013 Title 24 building standards. This commitment allows the Project to achieve LEED Gold certification through a combination of design features and operational measures.

5.2. Project GHG Reduction Strategies

The GSW commit to purchasing GHG credits so there are no net additional GHG emissions associated with the Project. By purchasing offsets, the GSW will help the State achieve its GHG reduction targets under Assembly Bill 32 (AB32)

Exhibit H

Greenhouse Gas Emissions Calculations

GSW Mission Bay Multi-Purpose Event Center & Ancillary Development Table of Contents

Description	Pag
Construction	_
Abbreviations for Construction Emission Calculations	3
Table 1. Construction Greenhouse Gas Emissions	4
Table 2. Construction Phases	5
Table 3. Construction Equipment List	6
Table 4. Offroad Equipment Activities and Emissions	7
Table 5. Project Construction Trip Estimates	8
Table 6. Onroad Equipment Activities, Emission Factors and Emissions	9
Operation	
Abbreviations for Operational Emission Calculations	11
Table 1. Project Description	12
Table 2. Oracle Arena and GSW Oakland Headquarters 2017 GHG Emissions	12
Table 3. Event Center Project 2017 GHG Emissions	12
Table 4. Annual Energy Emissions, Mobile Emissions, and Credits	13
Table 5. Annual Operational Emissions	13
Energy Use GHG Emissions Estimates	14
Mobile Source GHG Emissions Estimates	18
Solid Waste Indirect GHG Emissions Estimates	23
Water Indirect GHG Emissions Estimates	27
Generator GHG Emissions Estimates	30
CalEEMod Run Output	32

GSW Mission Bay Multi-Purpose Event
Center & Ancillary Development
Construction GHG Emission Calculations

Abbreviations for Construction Emission Calculations:

ARB

California Air Resources Board

CalEEMod

California Emissions Estimator Model

 CO_2

Carbon dioxide

CO₂e

Carbon dioxide equivalent

DSL

Diesel

GAS GHG Gasoline Greenhouse gases

Golden State Warriors

G\$W

HHDT

Heavy-Heavy Duty Trucks

ΗP

Horsepower

LDA

Light-Duty Auto

LDT

Light-Duty Trucks

LF

Load factor Medium-Heavy Duty Trucks

MHDT

Metric Ton

Golden State Warriors Event Center

Table 1. Construction Greenhouse Gas Emissions

	GHG	Emissions [MT CO2	e/yr]¹
Emission Source	Year 1	Year 2	Total
Offroad Equipment ²	3,997	1,358	5,355
Construction Trips ³	2,355	2,355	4,711
Total by Year	6,352	3,714	10,066

- Notes:

 1. Emissions reflect construction of both the event center and the office towers.
- 2. Emissions based on construction phases provided by the Project construction contractor and emission factors from OFFROAD2011. 2015 emission factors were conservatively used to calculate emissions for the first twelve months of construction.
- Emissions from construction trips are conservatively based on 2015 emission factors from EMFAC2011, and are distributed evenly between 2015 and 2016.

References: California Air Resources Board (ARB). 2011. EMFAC2011. ARB. 2011. OFFROAD 2011.

Table 2. Construction Phases

Phase Name	Project Equipment at Site	Equipment Quantity	Usage Hours per Workday	Equipment Start Month	Equipment End Month	Workdays per Week
Demolition/Mass Excavation	Street Sweeper	2	7	1	10	5
Mass Excavation	Large Excavalor	3	7	. 1	3	5
Mass Excavation	Scraper	3	7	1	3	5
Mass Excavation	Wheel Loader	3	7	1	. 3	5
Mass Excavation	Track Type Tractor Bide/Ripper	2	7	1	3	5
Rapid Impact Compaction	Track type tractor with hammer	3	7	1	3	5
Pile Installation	Drill Rig (for Installation of Auger Cast piles)	4	7	2	4	5
Pile Installation	Crawler Cranes	4	7	2	4	5
Pile Installation	Large Forklifts	2	7	2	4	5
Pile Installation	Bobcat or small excavators	4	7	2	4	5
Pile Installation	Culting and chopping saws	4	7	2	4	5
Shoring	Cut off wall (CDSM) equipment	4 _	7	1	2	5
Shoring	Drill Rig	2	7	2	4	_5
Shoring	Support Crene	2	7	2	4	5
Shoring	Grout-mixing plant	2	7	2	4	5
Shoring	Small Excavator	2	7	2	4	5
Building Construction (including arena)	Concrete Boom Pumps	2	7	2	13	5
Building Construction (including arena)	Bobcat	2	7 _	2	23	5
Building Construction (including arena)	Small Excavator	2	7	. 2	23	5
Building Construction (including arena)	Large Excavator	2	7	2	13	5
Building Construction (including arena)	Crawler Cranes	4	7	3	16	5
Building Construction (including arena)	Mobile Cranes	4	7	3	23	5
Building Construction (including arena)	Grandall-type Forklifts	8	. 7	3	24	5
Building Construction (including arena)	Cutting/chopping saws	15	7	3	24	5
Building Construction (including arena)	Tile cutting saws	10	7	8	24	5
Building Construction (including arena)	Drywall stud impact guns	25	7	8	20	5

Table 3. Construction Equipment List

Piese SID.	Company of the	Project Equipment # 1 2 2 2 2	OFFROAD Equipment 2 Sta		OFFROAD HP Bin			Ourantity On A Jacob	Hours Hours	Calendar Vest et	Construction Year	
		Street Sweeper	Sweepers/Scrubbers	285		300		2	3042			Chesel
	Mass Excavation	Larce Excavator	Excavators	523			0.3819	1	1369			Desel
		Scraper	Scrapers	500					1369			Desal
		V/heel Loader	Tractors/Loaders/Backhoes	211				3	1369			Dietal
	Mass Excevation	Track Type Tractor Bide/Rupper	Tractors/Loaders/Backhoes	150				2	913			Diesel
	Rapid Impact Compaction	Track type tractor with hammer	Tractors/Loaders/Backhoes	150	175	175		1 _3	1369	2015		Diesel
	Pin Installation	Drill Reg (for installation of Auger Cast piles)	Bare/Dnt Rigs	1205	9999	200	0.6025	4	1825	2015		Desel
	Prin Installation	Crawler Cranes	Cranes	530		8			1825	2015		Desel
	Pile Installation		Forkalts	93		120		2	913			Diesel
	Pite Installation		Rubber Tired Loaders	71					1825	2015		
		Cutting and chopping saws	Other Construction Equipment	6				. 4	1825	2015		Electric
			Bore/Dnt Rigs	150				2	913	2015		Dieses
			Cranes	530		.600		3	013	2015		Dosel
		Grout-moring plant	Other Material Handling Equipment	20	50	25		2	913			Diesel
		Small Excavator	Excevators	71		75		2	913			Chesel
		Cut off wall (CDSM) equipment	Bora/Dell Rive	150	175	175			. 1217	2015	<u> </u>	Cetol
		Concrete Boom Pumps	Other Construction Equipment	480		600			3346	2015		Dietel
			Rubber Tired Loaders	71		75		2	3346	2015		Diesel
		Small Excavator	Expayators	404	500	. 600			3346	2015		Diesol
	Building Construction (including arena)	Large Excavator	Excavators	523	750	600		. 2	3345	2015		Desail
		Crawler Cranes	Cranes	530	750	600	0.2681	. 4	6083	. 2015		Desail
		Moreia Cranes	Cranes	530	- 750	600	0.2881		6083	2015		Diesel-
		Grandall-brow Forkatta	Forklifts	33	120	120	0.201	8	12167	2015		
	Building Construction (including arena)	Custing/chopoing \$4945	Other Construction Equipment	0	.50		0.4154	15	22513	2015		Electra
	Building Construction (menuting sizens)		Other Construction Equipment	١	59	. 11	0.4154	10	7604	2015		Dectro
		Drywos stud impact guns	Other Construction Equipment	٥	50	11	0.4154	25	19010	2015		Diesel
~		Concrete Boom Purios	Other Construction Equapment	450	500	600	0.4154	2	304	2016		Dosei
		Bobcat	Rubber Tired Loaders	71	120	75	0.3618	. 2	3346	2016		
		Small Excavator	Excavators	1	500	500	0.3819	. 2	3346	2016		Dosel
		Large Escavator	Excavators	521	750	600	D.38193	. 2	304	2016		
			Cranes	530	750	- 53	0.2881	- 4	2433	2016		Cosel
			Cranes	530	750	600	0.2581	- 4	6592	2016		Diesel
		Grandal-type Forkitts	Forkits	93	120	120	0.201	. 6	14600	2016		Diesel
		Cutting/chopoing saws	Other Construction Equipment	- 0	50)	- 11		15	27375	2016		Electric
			Other Construction Equipment	. 0	50)	11		10		2018		Electro
		Drywall stud stopact guns	Other Construction Equipment	- 0	50		0.4154	25	30417	2016	2	Electric

Construction	- inches		Project Equipment (1)	OFFROAD Equipment	Total Hours	HP	OFFROAD HP	Tier HP	[Fuel]	Emissions	Unite	Poliutant
Construction	Phase D	Mind San Galacter and Street and a second		Sweepers/Scrubbers	3042	285	600	300	Diesel	494.825		CQ2
1	1	Demolition/Mass Excavation	Street Sweeper		1389	523	750		Diesel	342,521		CO2
_ 1	2	Mass Excavation	Large Excavator	Excevators	1389	500	560		Diesel	413,631		CO2
1_	_ 2 _	Mass Excavation	Scraper	Scrapers	913	150	175		Diosel	63,194		CO2
_ 1	_ 2 _	Mass Excavation	Track Type Tractor Bide/Ripper	Tractors/Loaders/Backhoes	1369	211	250		Diesel	133,338		COZ
1	2	Mass Excavation	Wheel Loader	Tractors/Loaders/Backhoes	1369	150	175		Diesel	94,796		CO2
1	_ 3 _	Rapid Impact Compaction	Track type tractor with hammer	Tractors/Loaders/Backhoes	1825	122	120		Diesel	58,736		COZ
1	4_	Prio Installation	Bobcat or small excavators	Rubber Tired Loaders	1825	530	750		Diesel	349,135		CO2
1	4	Pile Installation	Crawler Cranes -	Cranes	1825	330	50		Electric	940,130		CO2
1 1	_	Prio Installation		Other Construction Equipment		1205	9999		Dietel	1,384,513		CO2
	4	Prie Installation	Drift Rig (for Installation of Auger Cast piles)	Bore/Oral Rigs	1825				Diesel	21,371		CO2
1	4	Prie Installation	Large Forkalts -	Forkifis	913	93	120			86,173		GO2
1	5	Shoring	Drift Rig	Bore/Oral Rigs	913	150	175		Detel	9,039		CO2
1	- 5	Shoring	Grout-mixing plant	Other Material Handling Equipment	913	_20	50		Desel			CO2
- 1	5	Shoring	Small Excavator	Excavators	913	71	120		Diesel	30,999		CO2
1		Shoring	Support Crane	Cranes	913	530	750		Detel	174,567		
 i	6	Building Construction (including arens)	Bobcat	Rubber Tired Loaders	3346	71	120		Diesel	107,682		CO2
- i -	. 6	Building Construction (including grene)	Concrete Boom Pumps	Other Construction Equipment	3346	480	500		Diesel	835,840		COZ
12.	- 6	Building Construction (including arens)	Crawler Cranes	Cranes	6083	530	. 750		Diezel	1,163,763		CO2
1			Cutangichocolna save	Other Construction Equipment	22913	0	50		Electric	C		CO2
- 1.			Drywall stud impact guns	Other Construction Equipment	19010	9	50		Electric			CO2
1 -			Grandal-type ForUffs ·	Forkirts	12167	83	120		Diosel	264,945		COZ
- 1			Large Excavator	Excavators	33-6	523	750		Diesel	837,272		COZ
1		Building Construction (excluding arena)	Mobile Cranes	Cranes	6063	530	750		Deset	1,163,783		CO2
1			Small Progrator	Excavators	3346	404	500		Diesel .	648,765		CO2
			Tie cuting saws	Other Construction Equipment	7504	0	50		⊟actric	9		CO2
			Bobcat	Rubber Tired Loaders	3346	71	120		Diesel	107,582		CO2
- 1				Other Construction Equipment	304	450	500		Desel	75,985		CO2
- ; -				Cianes	2433	530	750		Diesel	455,513		CO2
2				Other Construction Equipment	27375	0	50		Dectric	- 4		COZ
2				Other Construction Equipment	30417	0	50		Dectric	- 4		COZ
2	6			ForMes	14600	93	120	120	Diesel	341,935		COS
2	-		Large Excevator	Excavators	304	523	750		Diesel	76,116		COZ
2	-			Cranes.	6692	530	750		Diesel	1,280,161		COZ
			Small Excavator	Excavators	3346	404	500	600	Diesel	648,765		CO2
2 2				Other Construction Equipment	18250	- 0	50	11	Bectric	G	lb i	CO2

Table 5. Project Construction Trip Estimates

		Average Number of	Average Number of	Number	Total	One-Way	Trips
Phase	Duration [months]	Daily Construction Trucks ¹	Daily Construction Workers ¹	of Work Days	Hauling Trips	Vendor Trips	Worker Trips
Entire Site						·	
Demolition (Entire Site)	1	88	10	22	352	-	440
Excavation and Shoring (Entire Site)	3	300	25	66	39,600		3,300
Arena							
Foundation & Below Grade Construction (Piles & Concrete)	6	20	100	131	•	5,240	26,200
Base Building	16	25	200	348		17,400	139,200
Exterior Finishing	10	25	50	218		10,900	21,800
Interior Finishing	18.5	30	150	402		24,120	120,600
Garage/Podium	٠.		1.0		. ,		
Foundation & Below Grade Construction (Piles & Concrete)	6	20	50	131		5,240	:13,100
Base Building	9	20	50	. 196		7.840	19,600
NW Tower					7 1 1	***	
Base Building	8	15	40	174		5,220	13,920
Exterior Finishing	5	2	10	109		436	2,180
Interior Finishing	12	10	100	261		5.220	52,200
SW Tower							
Base Building	8	15	40	174	-	5,220	13,920
Exterior Finishing	5	2	10	109		436	2,180
Interior Finishing	12	10	100	261		5,220	52,200
Entire Site							
Street Improvements	5	10	40	109	-	2,180	8,720
			Total Construct	ion Trips	39,952	94,672	489,560

Notes:

1. Proposed number of construction trucks and workers provided by Project Sponsor in a table titled "Summary of Construction Phases and Duration, and Daily Construction Trucks and Workers by Phase," dated 11/25/2014.

Table 6. Onroad Equipment Activities, Emission Factors and Emissions

	T						Ĭ		CO ₂ I	mission Fac	tor and Emis	sions	·
						İ		Running	Exhaust	Idling I	xhaust	Starting	Exhaust
Site	Emission Factor Year	Trip Type ¹	Vehicle Type ¹	Fuel	% of Fleet ¹	Total One- way Trips	One-way Trip Length	Emission Factor ² [g/mile]	Emissions [lb]	Emission Factor ³ [g/hr- yehicle]	Emissions [lb]	Emission Factor ² [g/one-way trip]	Emissions [lb]
	2015	Worker	LDA	GAS	50%	489,560	12,4	319	2,131,413	0	0	65	34,846
	2015	Worker	ĻDT1	GAS	25%	489,560	12.4	380	1,272,229	0	0	76	20,463
Mission	2015	Worker	LDT2	GAS	25%	489,560	12.4	458	1,531,579	0	0	91	24,623
Bay	2015	Vendor	T6	DSL	50%	94,672	7.3	1,155	879,662	7,308	63,551	0	0
	2015	Vendor	17	DSL	50%	94,672	7.3	1,711	1,303,415	6,854	59,609	0	0
	2015	Hauling	. 17	DSL	100%	39,952	20	1,711	3,013,955	6,854	50,311	, o	0

Notes:

1. CalEEMod default vehicle mix of light-duty auto (LDA), light-duty truck type 1 (LDT1), and light-duty fruck type 2 (LDT2) for worker trips; mix of medium heavy-duty whicles (MHDT or T6) and heavy heavy-duty irucks (HHDT or T7) for vendor trips; and all HHDT for hauling trips.

2. Running exhaust and starting exhaust emission factors are based on EMFAC2011 for San Francisco County.

3. Idling exhaust emission factors are based on EMFAC2011 Idling Emission Rates (ARB 2012). Idling is assumed to occur for 5 minutes per one-way trip.

References:
California Air Resources Board (ARB), 2011. EMFAC2011.
ARB. 2012. EMFAC2011 Idling Emitsalon Rates. Available online at: http://www.arb.ca.gov/msel/emfac2011_idling.e

GSW Mission Bay Multi-Purpose Event Center & Ancillary Development **Operational GHG Emission Calculations**

Abbreviations for Operational Emission Calculations:

AB ANDOC. Assembly Bill

ARB AWWA

Anaerobically Degradable Carbon (California) Air Resources Board American Water Works Association California Emissions Estimator Model

CalEEMod CEC

California Energy Commission

CFR

Code of Federal Regulations

CH₄

Methane

 CO_2

Carbon dioxide

CO₂e

Carbon dioxide equivalent

EF

Emission factor

EIR

Environmental Impact Report

GHG

Greenhouse gases

GSF

Gross square feet

GSW

Golden State Warriors

HQ

Headquarters

IPCC

Intergovernmental Panel on Climate Change

kBTU

Thousand British Thermal Units

KSF

Thousand square feet

LDA

Light-Duty Auto

LDT

Light-Duty Trucks

LHD

Light-Heavy Duty (Trucks)

MCY

Motorcycles

MDV

Medium-Duty Trucks Million British Thermal Units

MMBtu

MT

Metric Ton Megawatt-hour

MWh

Nitrous oxide

N₂O NOP

Notice of Preparation

OBUS

Other Buses

PG&E

Pacific Gas and Electric Company

SF sov Square feet Single Occupancy Vehicle

USEPA

United States Environmental Protection Agency

VMT

Vehicle Miles Traveled

Golden State Warriors Event Center Operational GHG Emissions Summary

Element	Oracle Arena and GSW Oakland Headquarters	Event Center Project
First Operational Year Considered	2017	2017
Oracle Arena	500 KSF	500 KSF
GSW Games 1	100%, 47 games	No games
Non-game Events ²	100%, 42 events	50%, 21 events
Mission Bay Event Center	•	750 KSF
GSW Games 1		100%, 47 games
Non-game Events ³	-	100%, 161 events
GSW Headquarters	Oakland	Mission Bay, 25 KSF

GHG Emissions [MT	Emission Source						
CO ₂ e/year]	Energy	Mobile	Area ¹	Waste	Water	Generators	
Oracle Arena (47 games and 42 events)	1,413	12,388	0.010	91	517		
GSW Headquarters	258	365		2	1	· -	
Sub-Total	1,671	12,753	0.010	92	518		
	45.004						

GHG Emissions	Emission Source							
[MT CO₂e/year]	Energy	Mobile	Area ⁴	Waste	Water	Generators		
Oracle Arena (21 events)	333	2,280	0.010	21 9	122	5 A -		
Mission Bay Event Center (47 games and 161 events)	748	16,741	0.014	136	23	106		
· GSW Headquarters	74	104	4.7E-04	4.6	0,66	100		
Parking and Loading ⁴	446	-	0.0090	-	-			
Credit due to Energy Efficiency	-646	•	•		•	. : ^r •		
Credit due to Trip Linking	-	-1,362	•	-		•		
Sub-Total	956	17,764	0.033	162	145	106		
Total	19 133							

Notes:

- 1. Number of GSW games in both scenarios is based on the 2013-2014 season. Averages for the previous years were skewed by
- 2. Number of non-game events at Oracle Arena is based on the schedule from recent years. In the Event Center Project scenario, half of the non-game events are assumed to remain at Oracle Arena while the other half are transferred to the Mission Bay Event
- 3. Number of non-game events at Mission Bay Event Center is based on the Notice of Preparation dated 11/19/2014.
- 4. GHG emissions from parking and area sources are based on CalEEMod runs. Emission calculations for other sources can be found in subsequent tables.

Operational GHG Emissions Summary

Table 4. Annual Energy Emissions, Mobile Emissions, and Credits

	Oracle Arena	and GSW HQ		Event Ce	nter Project	
GHG Emissions [MT CO₂e/year]	Energy	Mobile	Energy	Mobile	Credit due to Energy Efficiency	Credit due to Trip Linking
2017	1,671	12,753	1,602	19,125	-646	-1,362
2018	1,621	12,549	1,559	18,819	-639	-1,340
2019	1,572	12,344	1,517	18,512	-632	-1,318
2020	1,532	12,111	1,483	18,162	-627	-1,293
2021	1,532	11,907	1,483	17,856	-627	-1,271
2022	1,532	11,673	1,483	17,506	-627	-1,246
2023	1,532	11,411	1,483	17,112	-627	-1,218
2024	1,532	11,206	1,483	16,808	-627	-1,196
2025	1,532	10.944	1,483	16,412	-627	-1,168
2026	1,532	10,739	1,483	16,105	-627	-1,147
2027	1,532	10,535	1,483	15,799	-627	-1,125
2028	1.532	10,360	1,483	15,536	-627	-1,106
2029	1,532	10,214	1,483	15,318	-627	-1,090
2030	1,532	10,068	1,483	15,099	-627	-1,075
2031	1,532	9,951	1,483	14,924	-627	-1,062
2032	1,532	9,864	1,483	14,792	-627	-1,053
2033	1,532	9,776	1,483	14,661	-627	-1,044
2034	1,532	9,718	1,483	14,574	-627	-1,037
2076	1.532	9 880	1.483	14,486	-627	-1,031

ľabie 5.	Annual	Operational	l Emissions

GHG Emissions [MT CO ₂ e/year] ¹	Oracle Arena and GSW HQ	Event Center Project	Difference
2017	15,034	19,133	4,099
2018	14,780	18,813	4,032
2019	14,527	18,493	3,966
2020	14,253	18,139	3,886
2021	14,049	17,854	3,805
2022	13,815	17,529	3,714
2023	13,553	17,163	3,611
2024	13,348	16,879	3,530
2025	13,086	16,513	3,427
2026	12,881	16,228	3,347
2027	12,677	15,944	3,267
2028	12,502	15,700	3,198
2029	12,356	15,497	3,140
2030	12,210	15,293	3,083
2031	12,093	15,131	3,037
2032	12,006	15,009	3,003
2033	11,918	14,887	2,968
2034	11,860	14,806	2,946
2035	11,802	14,724	2,923

Notes:

1. GHG emissions reflect all source categories including energy, mobile, area, waste, water, and generators. Emissions from all sources except energy and mobile are assumed to remain constant in future years.

Energy Use GHG Emision Estimates

Energy Use GHG Emissions Estimates

Determination of Emission Factors

Global Warming Potentials (IPCC 1995) CH4 Global Warming Potential N2O Global Warming Potential

21 310

Electricity Use Emission Factor

				•		
γ.	PG&E Ele Year Emissi		CH ₄ Emission Factor ²	N ₂ O Emission Factor ²	Weighted Gre Emissio	enhouse Ozs n Factor
		[IP CONMAP]	[пь снумумь]	[IP N'OWM)]	(Ib CO;«IMWh)	(MY CO _{(*} /MWh)
21	017	349			352	0.159
20	018	328	0.029	0.00617	331	0.150
	319	307	0.029	0.00017	310	0,140
	220	250			293	0 133

Natural Gas Use Emission Factor
Natural Gas CO₂ Emission Factor
CH₄ Emission Factor
N₃O Emission Factor
Weightad Graenhouse Gas Emission Factor

117.6 Ib CO₂MMBbi 0.0023 Ib CH4MMBbi 0.0022 Ib N₂OMMBbi 118.4 Ib CO2e/MMBbi 0.0054 MT CO₂e/therm

Oracle Arena and GSW Oakland HQ GHG Emission Calculations

Energy Use Calculations

Venue	Area	Electricity Use Rate ²	Annual Electricity Use ⁴	Natural Gas Use Rate ²	Annual Natural Gas Use ⁴
741144	[sq fq	[kWh/sq ft-yr]	[MWh/yr]	[kBTU/sq ft-yr]	[therm/yr]
Oracle Arenz	500,000	8.7	4,325	27.0	134,600
GSW Headquarters	- "-	· ·	875		22,000

Annual Emission Calculations

Year	Oracle /	vena Emissions (i	AT/yr]	GSW Hea	dquarters Emissions	[MT/yr]
	Electricity	Hatural Gas	Total	Electricity	Natural Cas	Total
2017	690	724	1,413	140	118	258
2018	648	724	1.372	131	118	249
2019	607	724	1,331	123	118	241
2020	574	724	1,298	116	1118	234

Notice on POSE 2013.

2. Based on CASEDMed.
2. Based on CASEDMed.
2. Based on Shallond CASEDMed energy intensities for the Arasa land use, which reflect 2005 Title 24 standards.
4. OSW Headquarters electricity and catural gas use based on actual receipts.

Energy Use GHG Emissions Estimates

Project GHG Emission Calculations

Venue	Area	Electricity Use Rate	Scaling Percentage	Annual Electricity Use
		1	Percentage	[MWh/yr]
Event Center ¹	750,000 sq.ft		-	3,109
GSW Office ²	25,000 sqft	12.8 kWh/sq ft-yr	-	320
Oracle Arena (scaled) ³	500,000 sq ft	8.7 kWh/sq ft-yr	24%	1,021

Natural Gas Use Emissions Calculations

Venue	Area	Natural Gas Use Rate	Scaling Percentage	Annual Natural Gas Use [thermlyr]
Event Center	750,000 sq ft		•	47,087
GSW Office ²	25,000 sq ft	17,1 kBTU/sq ft-yr		4.263
Oracle Arena (scaled) ²	500,000 sq ft	27.0 kBTU/sq ft-yr	24%	31,807

Annual Emission Calculations

Year	Event Center E	ivent Center Emissions (MT/yr) 0		yr] OSW Office Emissions [MT/yr]		aled) Emissions (lyr)
	Electricity	Natural Gas	Electricity	Hatural Gas	Electricity	Natural Gas
2017	496	253	51	23	163	171
2018	466	253	48	23	153	171
2019	436	253	45	23 .	143	171
2020	412	253	42	23	135	171

Energy Use GHG Emissions Estimates

Office Tower Emission Reduction

Venue	Area	Annual Electricity Use (MWh/yr)
Office	580,000 \$4.8	6,695

Annual Emission Reduction at Office Towers

Year	Code-Compliant Office Energy Emissions [MT/yr]*	Project Office Energy Emissions [MT/yr]	Emission Credit [MT/yr]
2017	1,714	1 1068	-646
2018	1,643	1004	-639
2019	1,572	940	-632
2020	1,515	888	-627

Notes:

1. Annual heaty russ peroded by SSR in the document titled "100% Schematic Design Sustainability Narrative." No natural gas consumption is expected at the office towers, which will see electric heating.

2. Based on indigital CHEEDAdd energy intensities for the area land use, 1 not 34 components for selectricity and natural gas ware further marked by 21.84 and 61 58, russpectry, in a security of 21.85 bits artists. Significant section 10.34 bits area of 10.34 bits are of 10.34 bits are of 1

Caldomia Energy Commission. 2013. Impact Analysis. Calfornia's 2013 Bulking Energy Efficiency Standards.
Available online at http://www.energy.ca.gov/2013pub/cations/CEC-400-2013-008/CEC-400-2013-008 pdf7_sm_au_=XVR.23FV2dMBFjr2

California Emissions Estimator Model (CalEEMod). Available online at http://www.caleemod.com/

Intergavernmental Panel on Climate Change (IPCC), 1995, Second Assessment Report.
Available at http://www.ipcc.ch/ipccraports/sar/wg_l/ipcc_sar_wg_l_rutl_report.pdf

Pacific Gas and Electric Company (PGSE), 2013. Greenhouse Gas Emission Factors: Guidance for PGSE Customers.

Available online at http://www.pgs.com/arclude/idocut/pdfs/shared/environment/culculator/pgs_gbq_emission_factor_info_sheet.pdf

Mobile Source GHG Emision Estimates

Mobile Source GHG Emissions Estimates

Oracle Arena and GSW Oakland HQ Vehicle Trips Calculation

Scenerio	Total Employees*.	Total Driving Employees ³	% soy ²	% Carpool ¹	Carpool Density (people/ vehicle!*	One-way Tripsi Roundtrip	Total Vehicle Trips per Day	Average operating days per year ⁵	Total Vehicle Trips per Year
Oracle Arena Operations Employees		65	86%	14%		2	103	260	26,859
GSW Headquarters Employees	150	128	94%	6%	2	2	248	260	64,350

- A A Languad design of the people of which is issued to be concernible.

 A A Ranguad design of the people of the concernible of

	Total Speciators Per	Total Orining	l		Carpoul	One-way Tripe/	Total Vehicle Trips per	E. WHITE CHANGE	Total Vahicia
Scenario	Event	Specialors	% sov,	% Carpool ¹	(people/ vehicle)	Roundtrip	Event	per Year	Tripe per
Cracie Arena Geme Speciators	16,250	18,250	20%	80%	3	2	15,167	47	712,633
Cearle Arena Non-game Event Speciators	9.125	9,125	22%	90X	3	2	8.517	42	357,700

Vendor and Event Staff Trips

Scenario	Total Staff Per Ewent ¹	Total Driving Staff	% 30V'	% Carpool*	Cerpool Density [people/ vehicle]	One-way Tripe/ Roundtrip	Total Vehicle Trips per Event	Event make	Total Vahitie Trips per Year
Orade Arens Game Event Staff	1,013	791	86%	14%	2	2	1.474	47	69.274
Cracte Arena Non-game Event Staff	645	504	86%	14%	2	2	939	42	39,419

- Results

 A Assault sumbran of game event and non-game event intil were used.

 A ASI to dering the varies assaulted the a vender and event staff second joy to be most recent Bay. Area Contras data in COV/rept/years who has based on \$35 Volkey that second to Bits in Data, Serier Fatendia Analyst, GSVV.

 3.50 And capped note than Bay Area Contras data.

 A The amment assaulted activity of the position of vended is assumed.

Mobile Source GHG Emissions Estimates

Oracle Arena and GSW HQ GHG Emission Calculations

Trip Type	Scenello	Total Vehicle Trips per Year	Trip Longth [mile]	Total VMT [mile/year]		
Employee Commute Trips ¹	Oracle Arens operations employees	26,859	9,5	255,153		
	GSW Headquarters	64,350	9.5	611,325		
Employee Non-Commute Trips ¹	Oracle Arena operations employees	25,859	3	80,578		
	GSVI Headquarters	64,350	3	193,050		
Spectator Trips	Oracle Avena game speciators	712,833	25	17,963,400		
	Oracle Arena non-game ovent speciators	357,700	25	9,014,040		
	Oracle Arena pame vendors and event staff	69,274	9.5	658,103		
Vendor and Event Staff Trips ¹⁴	Oracle Arena non-game event vendors and event staff	39,419	9.5	374,479		
Opposing Team Bus Trips ^{1,1}	Oracle Arena Opposing Team Bus tros	141	18	2,468		
Delivery Trips** IGSW Headquarters 4,160 7.3						
Yotal Oracle Arena VMT (miles/year	1			28.348,231		
fotal GSW Office VMT [milesryear]				834,743		

Year	Emission Factor	E	missions [NT/yr]	
1441	[glmile] ⁹	Arena	GSW HQ	Total
2017	437	12,388	365	12.753
2018	430	12,190	359	12,549
2019	423	11,991	363	12,344
2020	415	11.765	345	12,111
2021	408	11,566	341	11,907
2022	400	11,339	334	11.673
2023	391	11,064	326	11,411
2024	384	10.885	321	11,206
2025	375	10.631	313	10,944
2028	368	10.432	307	10,739
2027	361	10.234	301	10.535
2028	355	10.064	298	10.360
2029	350	9.922	292	10.214
2030	345	9,780	288	10.048
2031	341	9,667	285	9.951
2032	338	9.552	282	9,564
2033	335	9,497	250	9,775
2034	333	P.440	278	9.718
2015	331	9,383	278	9,660

- Nature

 CodEBuild Defaul Trip Length for Commendat Worker 1696 in the San Francisco Bay Area Air Beals.

 2. Non-comment styps are assumed to have a tip tength of Jimit. Colsoon below the Control of the Commendation of the Comm
- Analysis (DV).

 A fine length in the sharing disease from thinks Square, Son Francisco, where the Oppositing Team is assumed to stay, to Orande Areas.

 A fine length is the State of the Stay Analysis of the State
Mobile Source GHG Emissions Estimates

Trip Type	Scenario	Delly One-way Vehicle Trips ^{4,2}		Days Per Year	Trip Longth [mlle]*		Total VMT [mllelyr]	
	1	Event Center	GSW Office		Event Center	GSW Office	Event Certer	GSW Dilke
Masion Bay, Weekend Tries	Basks to all Event Days	8.715	21	2)			5,051,214	3,653
	Concert Event Days	8,715	21	55	1		12,078,990	9.255
	No Event Days	55	21	26			36.035	4,389
	Baskethall Event Days	8,589	105	24	25	8.0	5,194,627	20,233
	Concert Event Days	8,589	105	45	1 .		9.739,926	37.938
Mession Bay, Weeksly Inps	Convention Event Days	3,921	105	61	1 1		6,027,361	51.427
	No Event Days	55	105	131	1 1		181,566	110,441
Total Annual VMT [mileyear]							38,309,720	237,595

Trip Type ⁶	Scenario	Total Vehicle Trips	Trip Length	Scaling 14	Total VMT (milelyear)	
Employee Commute Trips	Oracle Arena operations employees	26,659	9.5	•	255,163	
Employee Non-Commute Trips	Oracle Arena operations employees	26,659	3	•	80,578	
Spectator Trips	Oracle Arana non-game event speciators	357,700	25 .	50%	4,507,020	
Vendor and Event Staff Trips	Oracle Arana non-game event vendors and event staff	39,419	0.5	50%	374,479 5,217,240	
ntal Oracle Arena VMT (miles/year)						

		Emission Factor		Emissions	(MTAri)		
	Year	[g/mile] ⁴	Areru	SSW Office	Orecle Arena (eceled)	Total	
	2017	437	18,741	104	2,250	19,125	
	2018	430	16.473	102	2,243	18.619	
	2019	423	16,265	101	2.207	16,512	
	2020	415	15,839	90	2,165	18,162	
	2021	408	15,630	97	2,129	17.856	
	2022	400	15,324	95	2,087	17,506	
	2023	391	14,979	93	2,040	17.112	
	2024	384	14,711	91	2,003	16,606	
	2025	375	14,365	89	1.955	16.412	
	2026	348	14,096	67	1,920	16,105	
_	2027	361	13.830	66	1,883	15,799	
	2028	355	13.600	84	1,652	15,536	
	2029	350	13,408	83	1.628	15,315	
	2030	345	13,217	82	1,600	15.099	
20	2031	34)	13,064	81	1,779	14,924	
	2032	338	12,949	- 80	1.763	14,792	
	2033	335	12,834	80	1,748	14,661	
	2034	333	12,757	79	1,737	14,574	
_	2015	331	12.681	79	1.727	14.486	

Mobile Source GHG Emissions Estimates

		Daily One-way V	ehicle Tripe ¹		I
Trip Type	Project Scenario	Retail with Internal Trip Capture	Retail without Internal Trip Capture	Days Per Year ^s	Reduction in VMT [milelys]
Mission Bay, Weekend Trips	Baskethall Event Days	3,106	5,313	23	385,325
	Concert Event Days	3,106	5,313	55	921,430
	No Event Days	5,313	5,313	26	0
	Baskethal Event Days	2,560	4,323	24	333,942
	Concert Event Days	2,560	4,393	45	626,141
Mission Bay, Weekday Trips	Convention Event Days	2.560	4,393	61	848,769
	No Event Days	4.393	4.393	131	1 0
otal Reduction in VMT (mileveal)					3.115.505
Year	Emission Fector	Emission Credit			
100	[obsile)*	[MT/y/]			
2017	437	-1,362			
2018	410	1 2/0			

Year	Emission Fector	Emission Credit
2017	437	-1,362
2018	430	-1,349
2019	423	-1,318
2020	415	1.233
2021	408	-1.271
2022	. 400	•1,246
2023	391	-1.218
- 2024	384	-1,195
2025	375	+1,158
2026	. 368	-1,147
2027	361	-1,125
2028	355	-1,106
2029	150	-1.093
2030	345	-1.075
2031	341	-1,052
2032	338	-1.053
2033	335	-1,C44
2034	333	-1,007
2035	331	-1.031

Bay Area Census, 2013. Selected Census Data from the San Francisco Bay Area.
Available online at http://www.bayareacensus.ca.gov/bayarea.htm

_California Air Resources Board (ARB). 2011. EMission FACtor Model (EMFAC2011).

Available online at wew.arb.ca.gov/insel/modeling htm.

California Air Resources Board (ARB), 2011, LEV 3 Inventory Detabase Tool Version Sh. Available online of http://www.aib.ca.gov/msprop/dean_cars/clean_cars_ab1085/ev3/

Solid Waste Indirect GHG Emissions Estimates

Solid Waste Indirect GHG Emissions Estimates

Determination of Emission Factor

'Calculate the amount of Anaerobically Degradable Carbon (ANDOC) in 1 metric ton (MT) of solid was

Input	Value	Notes
ANDOC Content of Municipal Solid Waste		[1]
Total ANDOC in 1 MT waste	0.077 MT ANDOC/MT	Calculated

Calculate the amount of uncaptured and unoxidized ANDOC in 1 MT waste

Input	Value	Notes
Captured Portion of Landfill Gas	85%	[1]
Uncaptured Portion of Landfill Gas	15%	(1)
Oxidized Portion of Carbon in the Landfill Cap	10%	(1)
Unexidized Portion of Carbon in the Landfill Cap	90%	[1]
Uncaptured and unoxidized ANDOC	1,04E-02-MT ANDOC/MT	Calculate

Calculate the amount of uncaptured and unoxidized ANDOC in 1 MT was

Input	Value	Notes
Captured Portion of Landfill Gas	85%	[1]
Uncaptured Portion of Landfill Gas	15%	[1]
Controlled Portion of Captured Landfill Gas	99%	[1]
Uncontrolled Portion of Captured Landfill Gas	1%	[1]
Captured and uncontrolled ANDOC	6.55E-04 MT ANDOC/MT	Calculate

Solid Waste Indirect GHG Emissions Estimates

Calculate methane (CH₄) emissions from uncaptured and unoxidized, and captured and uncontrolled ANDOC in carbon dioxide equivalents (CO₂e)

Input	Value	Notes
Total ANDOC available for release	1.10E-02 MT ANDOC/MT	Calculated
Portion of Landfill Gas released as CH4	50%	[1]
Portion of Landfill Gas released as CO ₂	50%	[1]
100-year Global Warming Potential of CH4	21 g CO ₂ e/g CH ₄	[2]
Molecular Weight for CH ₄	16.04 g/mol CH ₄	-
Molecular Weight for C	12.01 g/mol C	-
CO ₂ o Emission Factor	0.155 MT CO ₂₀ /MT	

Notes:
1. California Air Resources Board. 2012. Email between Webster Tasat of the California Air Resources Board and Catherine Mukal of ENVIRON, 20 November 2012.
2. Based on IPCC 1995.

Oracle Arena and GSW HQ Emission Calculations

	Square Footage	Solid Waste Generation	Solid Waste	Generation	CO ₂ e EF	Emissions
Use	[square feet]	Rate ¹	[tons	/yt]	[MT CO2e/MT waste]	[MT COze/yr]
Oracle Arena	500,000	1.29 tons/1000 sf-yr	645		0.155	91
	Volume of Waste Generated ²	Waste Density ³	Mass of Waste	Diversion	CO ₇ e EF	Emissions
Use	Volume of waste Generaled	waste Dutisity	Generated	Rate	-	•••••
	[gallons/year]	[lb/cubic yard]	[lb/year]	[%]	[MT CO2e/MT waste]	[MT CO26/yr]
GSW Handquarters	93,000	87	40.060	35%	0.155	2

Motats

1. Fram the Nelles of Proparation deled 11/19/2014. Based on factors used in the Secremente Entertainment and Sports Center & Related Development EIR, 2013.

2. Whats generation from Ben Dras, Sonior Financial Analyst, GSW.

3. Average for Secretics- Business Sportiers, Internativacyle (Structure), Secretical Analyst, GSW.

4. Calculated diversion rate based on Information provided by Ban Dras, Senior Financial Analyst, GSW.

Solid Waste Indirect GHG Emissions Estimates

Project Emission Calculations

Use	Square Footage [†]	Solid Waste Generation	Solid Waste Generation	Scaling Percentage	CO ₂ e EF	Emissions
	[square feet]	1	[tons/yr]		[MT CO2e/MT waste]	
Event Center	750,000	1.29 tons/1000 sf-yr	968	-		136
GSW Office Space ³	25,000	1 lb/100 sf-d	33	-	0.155	5
Untransferred Events at Oracle Arena	500,000	1.29 tons/1000 sf-yr	645	24%	l	21
					Total Emissions:	162

Notes:

1. From the Notice of Preparation dated 11/19/2014.

2. Beard on factors used in the Sacramonto Enthratement and Sports Center & Related Development EIR, 2013.

3. GSV office assumed to operate 20 dds ya a year.

4. Oracle Arana will continue to operate without GSW games and with 50% of the baseline non-game ovents. Thus, the emissions were scaled by 24%, the percentage of all events that will continue to occur at the Oracle Arena.

Refreques.

CalRegole, 2009. Waste Disposal and Diversion Findings for Selected Industry Groups, June.
Available online at http://www.callecycle.cs.gov/Publications/Documents/Disposalt/5034105008.pdf.

Water Indirect GHG Emissions Estimates

27

Water Indirect GHG Emissions Estimates

Determination of Emission Factor

Excerpt of Table A4-6 of Implementing a Public Goods Charge for Water, 2020 GHG emissions per acre-foot of urban water in California (p. 32 of 48 of pdf)

Stage	State Average (ton CO ₂ /acre-foot)
Supply .	0,6
Treatment	0.01
Distribution	0.1
Wastewater	0.1
End Use	1.7
Total	2.51
Total Excluding End Use	0.81

Conversion Factors
1 acre-foot =
1 Mgal =
1 MT CO₂ =

325,851 gal 1,000,000 gal 1 MT CO₂s

Emission factor for indirect GHG emissions from water:

2,255 MT CO₂e/Mgal

Oracle Arena and GSW HQ Emission Calculations

Venue	Water Use Rate ¹	Area	Annual Water Use ²	Emission Factor	Emissions
	[gal/1000 sq ft-yr]	[sq ft]	[Mgal/yr]	[MT CO ₂ e/Mgal]	[MT CO ₂ e/yr]
Oracle Arena	458,266	500,000	229	2.255	517
GSW Headquarters	•		0.465	2,200	1
Total Emissions:					518

Notes:

1. Based on data from the "Commercial and Institutional End Uses of Water" report (AWWA Research Foundation 2000).

2. GSW Headquarters water use based on information provided by Ben Draa, Senior Financial Analyst, GSW.

Water Indirect GHG Emissions Estimates

Project Emission Calculations

Desired Commences	Water Use Rate1	CO₂e EF	Emissions
Project Component	[Mgal/yr]	[MT CO₂e/Mgal]	[MT COze/yr]
Event Center (includes GSW office)	9,1		21
Landscape	0.54	2.255	1.2
Washdown & Facility Cleaning	0,76		1.7
		Total Emissions:	24

	Material Des Deserg	Aron	Annual Water	Scaling	Emission	Emissions
Venue	Water Use Rate ²	Area	Use		Factor	EINISSIONS
	[gal/1000 sq ft-yr]	[sq ft]	[Mgal/yr]	Percentage	[MT CO ₂ e/Mgal]	[MT CO₂e/yr]
Untransferred Events at Oracle Arena	458,266	500,000	229	24%	2.255	122

- Notes:

 1. Based on Project Water Demand Memorandum dated November 14, 2014.

 2. Based on data from the "Commercial and Institutional End Uses of Water" report (AWWA Research Foundation 2000).

 3. Oracle Arena will continue to operate without GSW games and with 50% of the baseline non-game events. Thus, the emissions were scaled by 24%, the percentage of all events that will continue to occur at the Oracle Arena.

References:
American Water Works Association Research Foundation. 2000. Commercial and Institutional End Uses of Water.

California Public Utilities Commission. 2010. Implementing a Public Goods Charge for Water Available online at http://www.waterplan.water.ca.gov/docs/cwpu2009/0310final/v4c02a19_cwp2009.pdf

Generator GHG Emissions Estimates

Generator GHG Emissions Estimates

Project Emission Calculations

Location	s	ize	Fuel Type	Operation ¹	CO ₂ Emission Factors ²	CO ₂ Emissions
	(kW)	[hp]		[hr/yr]	[g/bhp-hr]	[MT/yr]
Mission Bay 18, 25 18 25 25	STATE OF THE	Trail?	STECK SEL	SWADILL NO	海田的外边的社会	and report with
Arena Standby Emergency	1,500	2,012	diesel	. 50	526	53
Arena Standby Emergency	1,500	2,012	diesel	50	520	53
	$\overline{}$			Tot	al Emissions:	106

Notes:

1. Operation for routine maintenance and testing is conservatively assumed to be 50 hours per year, the maximum allowable by the Bay Area Air Quality Management District.

2. CO₂ emission factor based on AP-42 (USEPA 1995).

References:
USEPA 1995. AP 42, Volume I, Fifth Edition. §3.4. Large Stationary Dieset and All Stationary Dual-Fuel Engines.
Available online at: http://www.epa.gov/thu/chie/fap42/ch03/final/c03s04.pdf

CalEEMod Run Output

Page 1 of 13

Date: 2/6/2015 5:08 PM

GSW No Project Arena San Francisco County, Annual

1.0 Project Characteristics

1.1 Land Usage

The Carleton Land Uses Seminary as	Name of Size of The Part	Metric of Africa	Lot Acreage 64	Floor Surface Area	Population
General Office Building	16.00	1000sqft	0.37	18,000.00	0
Arena	500.00	1000sqft	160.71	500,000.00	0

1.2 Other Project Characteristics

Climate Zone

2017

Utility Company

CO2 Intensity (lb/MWhr)

1.3 User Entered Comments & Non-Default Data

Project Characteristics - CO2 intensity based on PG&E forecasting for Year 2017.

CH4 Intensity (Ib/MWhr)

Land Use - Lot Acreage is CalEEMod default. ENVIRON did not modify lot acreage because it is only used for calculating construction emissions and the purpose of this run is to calculate area source emissions.

Architectural Coating -

Vechicle Emission Factors -

Vechicle Emission Factors -

Vechicle Emission Factors -

Energy Use -Construction Phase - Construction emissions determined outside of CalEEMod

Off-road Equipment -

CalEEMod Version; CalEEMod.2013.2.2

Page 2 of 13

Date: 2/6/2015 5:08 PM

Table Name 200	Column Name	Property Composition of the Comp	New Value
tbiConstructionPhase	NumDays	200.00	0.00
tbiProjectCharacteristics	CO2IntensityFactor	641.35	349
tbiProjectCharacteristics	OperationalYear	2014	2017

2.0 Emissions Summary

	ROGI	HOX	(, co (,	502 /	Fugitive i	Exhaust PM10	*PM10 ≠ Total	Fugitive PM2.5	Exhaust PM2.5	PM2.6 Total	Bio-CO2	NBIo-CO2	Total CO2	CH4.7	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	00.0	0.00 -	0.00	0.00	0.00	0,00

2.2 Overall Operational

Unmitigated Operational

	ROG	NOx	, co, .	302	Fugitive , PM10	Exhaust PM10	PM10 A	Fugitive + PM2.5	Exhaust PM2.5	PM2.5 Total	Bio-CO2	NBlo-CO2	Total CO2	7. CH4 :	N2O	COZe
Calegory 21					ton	Mr. ji	1000		ine in				M	May it		
Area	2.2848	5.0000e- 005	4.8300e- 003	0.0000		2.0000o- 005	2.0000o- 005		2.0000a+ 005	2.0000e- 005	0.0000	9.2200e+ 003	9.2200a- 003	3.0000e- 005	0.0000	9.7600a- 003
Energy	0.0710	0.6453	0.5421	3.8700e+ 003		0.0490	0.0490		0.0490	0.0490	0.0000	1,392.257 4	1,392.257 4	0.0706	0.0247	1,401.412 3
Mobile	2.1489	1.2957	9.4179	4.5900a+ 003	0.1603	0.0113	0.1715	0.0435	0.0104	0.0538	0.0000	344.7456	344.7458	0.0303	0.0000	345.3826
Wasta						0.0000	0.0000		0.0000	0.0000	5.6137	0,0000	5.8137	0.3435	0.0000	13.0288
Water						0.0000	0.0000		0.0000	0.0000	69,2339	195.5137	264.7476	7.1272	0.1713	487.5124
Total	4.5048	1,9411	9,9648	8,4500++ 003	0.1803	0.0603	0,2206	0.0435	0.0594	0.1029	75,0478	1,932.525 D	2,007.573 4	7.5720	0.1960	2,227.345 8

Page 3 of 13

Date: 2/8/2015 5:08 PM

2.2 Overall Operational Mitigated Operational

Total	4.5046	1.9411	9.9648	8.4600e- 003	0.1603	0,0803	0.2206	0.0435	0.0594	0,1029	75.0476	1,932,525	2,007,573 4	7.5707	0.1957	2,227,235
Water						0.0000	0.0000		0.0000	0.0000	69.2339	195.5137	264.7476		0.1710	467.4019
Weste						0.0000	0.0600		0.0000	0.0000	5.8137	0.0000	5.8137	0.3438	0.0000	13.0288
Mobile	2.1489	1.2957	9.4179	4.5900e+ 003	0.1503	0.0113	0.1715	0.0435	0.0104	0.0538	0.0000	344.7458	344.7458	0.0303	0,0000	345.3826
Energy	0.0710	0.6453	0.5421	3.8700e- 003		0.0490	0.0490		0.0490	0.0490	0.0000	1,392.257 4	1,392,257 4	0.0708	0.0247	1,401,412
Area	2.2648	5.0000e- 005	4.8300e- 003	0.0000		2.0000e- 005	2.0000a- 005		2.0000a- 005	2.0000a- 005	0.0000	9.2200a- 003	9.2200e- 003	3.0000e- 005	0.0000	9.7600a- 003
Celegory Co			N.									罗 罗				
	ROGA		80.4	\$502 m	Fugitive* PM10	Exhoust PM1011			Exhaust PM2.55	PM2,5 to Total	Blo-CO2	NBIo-CO2	Total CO2	CH4V	N2O	CO201

				enest	Sec. Makes S.		C PM10.	Funitive."	Exhaust	1 Pun 67	01- 000	Male COS	Telef COS	SC CH4%	N20 V	·· CO2e
2200 A 2 TO 18 TO	FINE PROGRAM	SCHOOL C	CO	30Z	Fugitive :	Exhaust				PEZO	DID CUZ	MOIO-COZ	TOTAL COS	20.00		3.00
A Section	\$172.20			100	PM10 /	PM10		:: PM2.5	PM2.6	A Total	100	Charles Steel	300	1. 19	- C. C.	4/4
1 3 3 3 5 5 5 5 C	100	A002.3365	2 4 314	\$3.98 E. S.	45.214	W. 38 76. 1	9 . 3 . 152.00	PCYC.S.M.		0.60	12 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	A Secretary Contracts	1200 1 1 100	2 42		2.2
THE DESIGNATION OF	C.W.TPSC/SACON . Z.	WINES CO.	Stock & 1311/4	THE THEY	Calculate has	TARREST ACCOUNT	7,11	personal district								-
Percent	0,00	0,00	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0.00	0.00	0.00	0.00	0.02	0.14	0,00
Reduction	1			**** .	****				****					1		
Reduction						ı	ı	1						1		

3.0 Construction Detail

Construction Phase

Phase	Phase Name	Phase Type	Start Date 40	End Date	Num Dava	Num Dava	Phase Description
Numbe	The state of the s	The second secon	45 30 Com 14 15	GOALS KIND	Wank-	STATE OF THE PARTY	THE PARTY OF THE PROPERTY OF THE PARTY OF TH
Numbe		Jacob State - Market Sa	200	3 4 5 5 5	44.3	237.12	BOOK PARTY AND A SECOND
190995-33	2 Charles Automatical Control of the	Parent and the Control of the Contro	CACUPACION CONTRA	73F90242 . 4	1. w/. 402.492.1	7 . 7	214 (1434) (141) (141)
1	*Demolition	*Demolition	1/1/2015	12/31/2014	. 5	. 0.	
Ι,	Domondon	· Comonicon	,			• -•	

Acres of Grading (Site Preparation Phase): 0

CalEEMod Version: CalEEMod.2013.2.2

Page 4 of 13

Date: 2/6/2015 5:08 PM

Acres of Grading (Grading Phase): 0

Acres of Paving: 0

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 0; Non-Residential Outdoor: 0 (Architectural Coating -- sqft)

OffRoad Equipment

Trips and VMT

Phase Name Officed Equipment Count	Mankey Tele Vender Tele i Haufing T	in Washer Ton Vander Ton	Houling Too	Worker Vehicle	T Mandar C. 17	S Moullons & 4
Phase reame way Omosu Equipment.	Atolyal lish Animoralish Linguish 1	the Line of the Canada the	Daniel Lib	Troiker velicio		7.1100000
Count March	Number: Number Number	Longth Longth	Longth . I	CIDSS:	Vonicio Class I \	vonicio Class
Complete Control of the Control of t	Life was not the life in the waste of the state of	The state of the s	4 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	a to the day of a later of	2 Sept 12 April 2015	200 March 1

3,1 Mitigation Measures Construction

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

The same of the same	r ROG	NOx.	.y. co ∻i	S02	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.6 Total	Bio-CO2	NBlo-CO2	Total CO2	CH4	N2O	CO2a
Category					tor Tr	***							M	Mr States	30	4.23
Mitigated	2.1489	1.2957	9,4179	4.5900a- 003	0.1603	0.0113	0.1715	0,0435	0.0104	0.0538	0.0000	344.7458	344,7456	0.0303	0.0000	345.3826
Unmitigated	2.1489	1.2957	9.4179	4.5900e- 003	0.1603	0.0113	0.1715	0.0435	0.0104	0.0538	0.0000	344.7458	344,7456	0.0303	0.0000	345,3826

16

Page 5 of 13

Date: 2/8/2015 5:08 PM

4.2 Trip Summary Information

Materia Materia de Propinsione de la compansione della compansione					治的を含むが Mitigated 心がこともの
Land Use Care Park	Wookday	Saturday N	Sunday 17	Annual VMT	Annual VMT
Arena	5,355.00	5,355.00	5355.00	105,043	105,043
General Office Building	176.16	37.92	15.68	318,998	318,998
Total	6,531.16	5,392.92	5,370.68	424,041	424,041

4.3 Trip Type Information

TO A STATE OF STATE OF	学 经有100	Miles	15年10年16年	Marin N	沙山市	***************************************	中国的	Trip Purpos	0 %
建设设施 Land Use 1399 开始	H.W.or C.W.	H-Sor C.C	H-O or C-NW	H-W or C-W	H-S or C-C	H-O of C-NW	Primary	Diverted :	Pass-by
Arena	9.60	7.30	7,30	0.00	81.00	19,00	0.66	0.28	0.6
- General Office Building	9.60	7.30	7.30	33.00	48.00	19.00,	77	19	4

1	# LDA	LDT1:	*ULDT2;	MDV:	≋LHD 1€3	ÆLHD2→€	€ MHD €	* HHD	COBUS	& UBUS >4	MCY	Ø SBUS.∞	MH W
	0,627987	0.058543	0.149166	0.078755	0.026467	0.003331	0.026417	0.003903	0.003129	0.011009	0.010235	0,000550	0.000507

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

CalEEMod Version: CalEEMod.2013.2.2

Page 6 of 13

Date: 2/6/2015 5:08 PM

	ROGL	Y NOx	SCO S	51.502.5 12.13.50	Fugitive / PM10's	Exhaust a SPM10*	C PM10 E- Total	Fugitive PAI2.5	Exhaust PM2.5¢	PM2.5 A Total	Bio-CO2	NSIo-CO2	Total CO2	44 CH4 B	N20 %	CO2e
Calegory (A		Ţ				7.7							K I	2.3	FIR	
Natura/Gas Mitigated	0.0710	0.6453	0.5421	3.8700e- 003		0.0490	0.0490		0.0490	0.0490	0,0000	702.5153	702.5153	0,0135	0.0129	706.7907
NaturalGas Unmitigated	0.0710	0.6453	0.5421	3.8700e+ 003		. 0.0490	0.0490		0.0490	0.0490	0.0000	702.5153	702.5153	0.0135	0,0129	706.7907
Electricity Mitigated						0.0000	0.0000		0.0000	0,0000	0.0000	689.7421	689.7421	0.0573	0.0119	694.6216
Electricity Unmitigated		-				0.0000	0.0000		0.0000	0.0000	0.0000	669.7421	089.7421	0.0573	0.0119	694.6216

5.2 Energy by Land Use - NaturalGas

Unmitigated

	Natura Kia s Use	ROG	2 0×		502 ×	Fugitive.	Exhaust PM10	PM10 Total	Fugilive PM2.5	Exhaust PAI2.5	PM2.6 Total	Bio-CO2	NBio-CO2	Total CO2	OH4	N2O	(CO2•
Land Use	KBTUA			· 第一条	770	i lon	** .**				5 J. V		200	, M	r v i		的存储。 概以为
Arena	1.284e +007	0.0692	0.6294	0.5287	3.7800o- 003		0.0478	0,0478		0.0478	0.0478	0.0000	685.1913	685.1913	0.0131	0.0125	689,3613
General Office Building	324840	1.7500e- 003	0.0159	0.0134	1.0000e- 004		1.2100e+ 003	1.2100o- 003		1.2100a- 003	1.2100s- 003	0.0000	17.3240	17.3240	3.3000e- 004	3.2000e- 084	17.4295
Total		0.0710	0.6453	0.5421	3.8800e- 003		0.0491	0.0491		. 0.0491	0.0491	0.0000	702.5153	702.5153	0.0135	0.0129	706,7907

Page 7 of 13

Date: 2/6/2015 5:08 PM

5.2 Energy by Land Use - NaturalGas

	NaturalGa s s Usa C s as as so	ROGR	100	4.00	# 902	Fugitive : PM1023		A PM10 Star Total Star Land	Fugitive PM2.6	Exhauet PM2.5	PM2.5		NBIo-CO2	Total CO2	1044 1044 1044	7 N2O;	C02e
Cland Use 18	IBTUS:										施政				M.		
Arena	1.284e +007	0.0692	0,6294	0.5287	3.7800e- 003		0.0478	0.0478		0.0478	0.0478	0.0000	685,1013	685.1913	0.0131	0.0125	689.3613
General Office Building	324640	1.7500a- 003	0.0159	0.0134	1.0000e- . 004		1.2100a- 003	1.2100e- 003		1.2100e- 003	1.2100e- 003	0.0000	17.3240	17.3240	3.3000e+ 004	3.2000a- 004	17.4295
Total		0.0710	0.6453	0.5421	3,8800e- 003		0.0491	0.0491		0.0491	0,0481	0.0000	702.5153	702.5153	0,0135	0.0129	706.7907

5.3 Energy by Land Use - Electricity Unmittgated

	Electrical States	Total CO2	614	NO	CO2e
Land Use :	**************************************		M.	Test.	
Arena	4,135e +008	654.5860	0.0544	0.0113	659,2168
General Office Building	-222080	. 35.1581	2.9200a- 003	6.0000e- 004	35.4048
Total		689,7420	0.0573	0.0119	694,6216

CalEEMod Version; CalEEMod.2013.2.2

Page 8 of 13

Date: 2/8/2015 5:08 PM

5.3 Energy by Land Use - Electricity Mitigated

Electricity); Use 7: (III)	Total CO2	2014 2014 2014 2014 2014 2014 2014 2014	N20	*CO2
W.Y.			7	
4.135e +005	654.5860	0.0544	0.0113	659.2168
222060	35.1581	2.9200e- 903	6.0000a- 004	35.4048
	689.7420	0.0573	0,0119	894.5218
	Lise 11 (110) 11 (110	Miney 154 5860 154 5860 154 5860 154 5860 154 5860 155	Minute	State

6.0 Area Detail

6.1 Mitigation Measures Area

	ROG /	NOx.	C CO	802	Fugitive Exhaust PM10 PM10	PM10 Total	PAC2.5 Exhau PAC2.5 PAC2.		Bio-CO2	NBio-CO2	Total CO2	CH4	N2O	COZe
Category		PROPERTY.	THE REAL PROPERTY.		torstyr	Marine Marine	MANAGES	地域和	美国	rae in i	7 64 M	Mar Ja	iat 6	**************************************
Mitigaled	2.2848	5.0000a+ 005	4.8300a- 003	0.0000	2.0000e- 005	2.0000s- 005	2.0000 005	2.0000e- 005	0.0000	9.2200a- 003	9.2200a+ 003	3.0000a+ 005	0.0000	9.7600e- 003
Unmitigated	2.2848	5.0000e- 005	4.8300e- 003	0.0000	2.0000e- 005	2.0000a- 005	2.0000 005	9- 2.0000e- 005	0.0000	9.2200e- 003	9.2200a- 003	3.0000e+ 005	0.0000	9.7600e- 003

Page 9 of 13

Date: 2/6/2015 5:08 PM

CalEEMod Version: CalEEMod.2013.2.2

Page 10 of 13

Date: 2/6/2015 5:08 PM

6.2 Area by SubCategory Unmitigated

														1		
	a ROG 4	MOX 3	800	3-SO2	Fugitive (PM10 H	Exhaust PM10 &	PM10 Total	Flighte F PM2.5%	Exhaust PM2.51	PM2.5	Bio-CO2	NEIG-CO2	Total CO2	CH4	1 N20 1	ucoze f
SubCelegory I																
Architectural Coating	0.2691					0.0000	0.0000		0.0000	0:0000	0.0000	0.0000	0.0000	0,0000	0.0000	0.0000
Consumer Products	2.0152			ļ		0.0000	0.0000		- 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	4.7000a- 004	5.0000e-	4.83009-	0.0000		2.0000e-	2.0000e- 005		2.0000e+ 005	2.0000a- 005	0.0000	9.2200a- 003	9.2200e- 003	3.0000e- 005	0.0000	9.7600e- 003

Mitigated

	ROG	NO.	001 101 101	502	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive PM2.6	Exhaust PM2.5	PM2.5	Bio-CC2	NBIo- CO2	Total CO2	CH4	N20	CO2e
SubCategory)	網探			N.	lon Li Asiri	· ·	i de la company	樹鄉			N/A			· ·	***	n
Architectural Coating	0.2691	2.	7.1			0.0000	0.0000		0,0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	2.0152					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0,0000
Landscaping	4.7000e- 004	5.0000e- 005	4.8300e- 003	0.0000		2.0000e- 005	2.0000a- 005		2.0000e- 005	2.0000e+ 005	0,0000	9.2200a- 003	9.2200a- 003	3.0000e- 005	0.0000	9,7600a 003
Total	2.2848	5.0000e- 005	4.8300e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000+ 005	0,0000	9.2200e- 003	9.2200e- 003	3.0000e- 005	00000	9.7600e- 003

7.0 Water Detail

7.1 Mitigation Measures Water

	Total CO2	CH4	4 N2O	CO201
**Calegory Di		M.	Market San	
Unmiligated	264,7476	7,1272	0.1713	467.5124
Mitigated	284.7478	7.1259	0,1710	487,4019

7.2 Water by Land Use Unmitigated

Total		264.7476	7.1272	0,1713	467.5124
General Office Building	2.84374 / 1.74294	4.3038	0.0930	2.2500a+ 003	6.9521
Arene	215.385 / 13.748	260.4439	7.0343	0.1590	460,5603
Land Use	Mod		, M	Mr. Service	
	Indoor/Out door Use	Total CO2	CH4	N20	CO2e

42

•

Page 11 of 13

Date: 2/6/2015 5:08 PM

CalEEMod Version: CalEEMod.2013.2.2

Page 12 of 13

Date: 2/6/2015 5:08 PM

7.2 Water by Land Use

Mitigated

	Indeer/Out door Use	Total CO2	SCH4	NEO X	CO26.5
Contained User Street					
Arena	215.385/ 13.748	280,4439	7.0330	0.1688	480,4513
General Office Building	2.84374 / 1.74294	4.3038	0.0929	2.2400e- 003	6.9506
Total		264.7476	7.1259	0.1710	467.4019

8.0 Waste Detail

8.1 Mitigation Measures Waste

Category/Year

	Total CO2	CI4	N20	CO2e/4
April 1		M	<i>*</i>	
Charles Line Chillians	200 mg 75.7	200-2009/27	Called Att	(94) A (4 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Mitigated	5.8137	0.3436	0.0000	13.0288

8.2 Waste by Land Use Unmitigated

7.JW	LWaste A Disposed	Total CO2	雑数	120 X	V COZer
Land Use av	tons"				
Arena	13.76	2.7932	0.1651	0.0000	6.2596
General Office Building	14.88	3.0205	0.1785	0.0000	6.7692
Total		5,8137	0.3438	0.0000	13.0288

Mitigated

02a	C g	17.0	N2O	101	Total COS	Wests Disposed	1433A
			Mr. 144	, M		tone	Land Use
2596	đ.	0	0.000	0,1651	2.7932	13.76	Arena
802	6.	ö	0.0000	0.1785	3.0205	14.88	General Office Building
0288	13	0	0,000	0,3438	5,8137		Total

9.0 Operational Offroad

Equipment Type	Number	Houre/Day 🚿	Days/Yenr ,	Horse Power	Load Factor Fuel Type

10.0 Vegetation

Page 13 of 13

Date: 2/6/2015 5:08 PM

CalEEMod Version: CalEEMod.2013.2.2

Page 1 of 14 GSW Mission Bay Arena

San Francisco County, Annual

Date: 2/6/2015 4:47 PM

1.0 Project Characteristics

1.1 Land Usage

A-70426-Willed and Hand St. Schools	1997 Euro Of code in Size of an inches because the	AND THE Metric LOCAL TOP STATE	Lot Acresos	Floor Surface Area 3.	Population:
Park Commence and the Park Com	を指する。すべいできまれる。	The state of the s	See Constitution (See	Since within weer or a war day	Action with the factor
Arena	750.00	1000sqft	241.07	750.000.00	<u> </u>
Audia	150,00	, loodaqii	, 241.01	, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	

1.2 Other Project Characteristics

Urbanization	Urban	Wind Speed (m/s)	ind Speed (m/s) 4.6 Precipitation Freq (E				Wind Speed (m/s) 4.6 Precipitation Freq (Days)				Wind Speed (m/s) 4.6 Precipitation Free			
Climate Zone	5 .			Operational Year	2017									
Utility Company	Pacific Gas & Ele		-											
CO2 Intensity	349	CH4 Intensity	0,029	N2O Intensity 0	.006									

- 1.3 User Entered Comments & Non-Default Data

Project Characteristics - CO2 intensity based on PG&E forecasting for Year 2017

Land Use - Actual to size is different than CalEEMod default acreage values but default values are used here since lot acreage only affects the construction equipment list, and construction emissions are calculated outside of CalEEMod. Architectural Coaling -

Vechicle Emission Factors -

Vechicle Emission Factors -

Vechicle Emission Factors -

Energy Use - Title 24 eletricity and natural gas energy intensities have been adjusted for 2013 standards per CEC report: http://www.energy.ca.gov/2013publications/CEC-400-2013-008/CEC-400-2013-008.pdf

Construction Phase - Construction emissions determined outside of CalEEMod

Off-road Equipment -

Page 2 of 14

Date: 2/8/2015 4:47 PM

Table Name Comment	Column Name on Asset	Zunas non Default Value	New Value 142 F15
tblConstructionPhase	NumDays	300.00	0.00
tblEnergyUse	T24E	- 1.48	1.16
ibiEnergyUse	T24NG	18,78	15.60
tblProjectCharacteristics	CO2IntensityFactor	641.35	349
tblProjectCharacteristics	OperationalYear	2014	2017

2.0 Emissions Summary

	ROG		CO	802	Fugitive PM 10	Exhaust PM102	Total	Fugitive PM2.5	- PM2.5	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	対象が	N20	CO2e
Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0.00	0.00	0,00	0.00	0.00	0.00	0.00	0.00

CalEEMod Version: CalEEMod.2013.2.2

Page 3 of 14

Date: 2/6/2015 4:47 PM

2.2 Overall Operational Unmitigated Operational

	ROG	X NOX	CO (*)	9025	Fugitive C PM10 P	Exhaust 5		Fugilite 2 3 PM2.6 3	Exhaust	PM2.5 Total		NBio-CO2	Total CO2	10143 1244	4 N2O 4	CO2e
Calegory		47														
Area	3.3209	7,0000e- 005	7.0200a- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000a+ 005	3.0000a- 005	0.0000	0.0134	0.0134	4.0000e- 005	0.0000	0.0142
Energy	0.0910	0.8272	0.6949	4.9500e+ 003		0.0629	0.0829		0.0629	0.0820	0.0000	1,844.400 3	1,844,400 3	0.0957	0.0327	1,856.55 2
Atobile	3.1053	1.6691	12.0948	4.2800e- 003	0.0596	0.0130	0.0725	0.0152	0.0119	0.0281	0.0000	318.3972	318.3972	0.0373	0.0000	319.180
Waste						0.0000	0,0000		0.0000	0.0000	4.1897	0.0000	4.1897	0.2476	0.0000	9.3895
Water						0.0000	0.0000		0.0000	0.0000	102,4978	268.1662	390.6658	10.5514	0.2535	690.640
Total	8.5172	2,5163	13.6987	9.2400e- 003	0,0596	0.0759	0.1354	0.0162	0.0748	0,0910	106.6573	2,450.979 0	2,557,666 4	10.9321	0.2863	2,875.98 0

Page 4 of 14

Date: 2/6/2015 4:47 PM

2.2 Overall Operational Mitigated Operational

	da:	ROG	II NO.	(CO.)	T 502	Fugitive to ZPM107	Exhoust PM10.5	S PM10(7 Total				Blo-CO2	NBIo-CO2	Total CO2	CH4	6 N20	CO2e
	Category to																
Г	Area	3.3209	7.0000a+ 005	7.0200e- 003	0.0000		3.0000e- 005	3,0000e- 005		3.0000e- 605	3.0000e- 005	0.0000	0.0134	0.0134	4.0000e- 005	0.0000	0.0142
[Energy	0.0910	0.8272	0.6949	4.9500a- 003		0.0629	0.0629		0.0629	0.0629	0.0000	1,844,400 3	1,844.400 3	0.0957	0.0327	1,856,558 2
'	Mobile	3,1053	1.6891	12.0948	4.2800e- 003	0.0596	0.0130	0.0725	0.0162	0.0119	0.0281	0.0000	318.3972	318.3972	0.0373	0.0000	319.1807
	Wasie				-,		0.0000	0.0000		0.0000	:0.0000	4.1897	0.0000	4.1897	0.2476	0.0000	9.3895
"	Water						0.0000	0.0000		0.0000	0.0000	102.4976	268.1682	390.6658	10.5495	0.2631	690,6770
Γ	Total	6,5172	2.5163	13.6967	9,2400a- 003	0.0596	0.0759	0.1354	0,0162	0.0748	0.0910	106,6873	2,450,979	2,557,666 4	10,9302	0.2859	2,875.819 5

Q E	ROGTUA	NOx	C2.75.36	- 502	Fugitive : PM 10	Exhaust PM10	PM10 Y Total	Fugitive / PM2.5	Exhaust PM2.5	// Total	40.77	HBIo-CO2	Total CO2	200	H20	C02e
Perc. Reduc	0.00	0.00	0.00	0.00	0,00	0.00	0.00	0.00	. 0.00	0.00	0.00	0,00	0,00	0,02	0,14	0.01

3.0 Construction Detail

Construction Phase

Phase Number	Phase Name		Start Date	End Date	Num Daye Week	Num Days	Phase Description
1	Demolition	Demolition	1/1/2015	12/31/2014	5	0	

Acres of Grading (Site Preparation Phase): 0

CalEEMod Version: CalEEMod.2013.2.2

Page 5 of 14

Date: 2/8/2015 4:47 PM

Acres of Grading (Grading Phase): 0

Acres of Paving: 0

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 0; Non-Residential Outdoor: 0 (Architectural Coating – sqft)

OffRoad Equipment

Phase Name 18 1994 Officed Equipment Type 9 Amount (Usage Hours) Horse Powers Wilcold Factors

Trips and VMT

	Vendor Trip Heuling Trip Worker Vehicle Class Longth Class Vehicle Class Vehicle Class Vehicle Class

3.1 Mitigation Measures Construction

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

Jan.	E-ROG	* NOx	ÇO :	802	Fugitive PM10	Exhaust PM10	PM10 Total	Fugitive . PM2.5	Exhaust - PM2.5	PM2.5 Total	Blo-CO2	NBlo-CO2	Total CO2	GT.	N2O	CO2e
Calogory		4			lon	styr	91.00 1	QIA.		No.		ád t	. 73 /g	MT.		
Mitigated	3.1053	1.6891	12.9948	4.2800a- 003	0.0596	0.0130	0.0725	0.0162	0.0119	0.0281	0.0000	318.3972	318.3972	0.0373	0.0000	319.1807
Unmitigated	3.1053	1.6891	12.9948	4.2800e- 003	0.0596	0.0130	0.0725	0.0182	0.0119	0.0281	0.0000	316.3972	318.3972	0.0373	0.0000	319,1807

io

Page 6 of 14

Date: 2/6/2015 4:47 PM

4.2 Trip Summary Information

WHICH THE PARTY OF	MANAGE AND AVOID	rage Dally Trip Ra	low market was	: Messes Unmitigated Bevery List	BARGETS AND Miligaled State Co.
Land Use	Weekday	I Saturday #4	Sunday	Annual VMT() veti	Annual VMT
Arena	8,032.50	8,032.50	8032.50	157,565	157,565
Total	8,032,50	8,032.50	8,032.50	157,565	157,565

4.3 Trip Type Information

TARK WALLET	12,400,000	Milos y		EX.SEC.	Trp X	E-Walle	N. A. R. P.	Trip Purpos	***************************************
Land Use	H-W or C-W	H-S of C-C)	H-O or C-NW	H-W or C-W	H-S of C-C	HO or C-NW,	Primary 4	Diverted	Pass-by
Arona	9.50	7,30	7.30	0.00	81.00	19.00	0.66	0.28	0.6

- 1	1 DATE:	Total Date of	14"1 DTQ . 4	C MONE CO.	": CUD41."	Gri uno	CONTRACTOR OF THE PERSON OF TH	WOUND WAS	ORUS	HIRLIN	UCY	SRUS	GOVERNMENT OF THE SECOND
	1000			ALC: NO PARTY OF THE PARTY OF T	, D.O.	47	22 100 100						STORT MHTELL
	0.627987	0.058543+	0.149166	0.078755	0.026467+	0.0033311	0.926417	0.003903	0.003129	0,011009	0.010235*	0.0005501	0.000507
	0.00,	-,,											

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

CalEEMod Version: CalEEMod.2013.2.2

Page 7 of 14

Note: 2/8/2015 4:47 PA

	ROO or	(NOX	CO	SO21	Fugitive a PM10 c	Exhoust (Z PM10 se iz Total Se the Total	Fugitive PM2.5	Exhaust p	PM2.51				S) CH412	N20) CO2e 1
Category No.							FI SE									
NaturalGas Miligated	0.0910	0.8272	0.6949	4.9500a- 003		0.0629	0.0629		0.0629	0.0829	0.0000	900.5143	900,5143	0.0173	0.0165	905,9948
Natura/Ges Unmitigated	0.0910	0.8272	0.6949	4,9800e- 003		0.0029	0.0629		0.0629	0.0629	0.0000	900.5143	900,5143	0.0173	0.0165	905.9948
Electricity Miligated						0.0000	0.0000		0.0000	0.0000	0.0000	943.8860	943.8660	0.0784	0.0162	950,5636
Electricity Unmitigated						0.0000	0.0000		0.0000	0.0000	0.0000	943,8860	943.8850	0.0784	0.0162	950.5636

5.2 Energy by Land Use - NaturalGas

TOM GIVE	NaturalGa © Uso	ROG	* NOx		302	Fugitive PM10	Exhaust PM10	PM10 Total	Fugilive PM2.5	Exheust PM2.5	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N2O 4	CO2e
Land Use 6	NO.					tor 1	elyra (TS					*	5,311	M	40 0.* kb		
Arena	1.6875e +007	0.0910	0.8272	0.6949	4.9500e- 003		0.0629	0.0629		0.0829	0.0629	0.0000	900.5143	900.5143	0.0173	0,0185	905,9946
Total		0.0910	0.8272	0.6949	4.9600e- 003		0.0629	0.0629		0,0129	0,0629	0.0000	900.5143	900.5143	0,0173	0.0165	905.9946

51

Page 8 of 14

Date: 2/6/2015 4:47 PM

CalEEMod Version: CalEEMod.2013.2.2

Page 9 of 14

Date: 2/6/2015 4:47 PM

5.2 Energy by Land Use - NaturalGas Mitigated

	NaturaKa Fa Usa F	ROG R	S 100	88	(2502)	Fugitive PM10	Exhaustr PM101	PM10	Fugline is PMZ.6	Exhaust PN2.51	PM2.6 Total	Blo-CO2	NBio-CO2	Total CO2	CH451	11120	CO2e
Land Use To	KBTUAT:		想到					總法	是数								建 建
Arena	1.8875e +007	0.0910	0.8272	0,6949	4.9500e- 003		0.0629	0.0629		0.0629	0.0629	0.0000	900.5143	900.5143	0.0173	0.0165	905.9946
Total		0,0910	0,8272	0,6949	4.9600e- 003		0.0629	0.0629		0.0629	0.0629	0.0000	900.5143	900.5143	0.0173	0,0165	905,9946

5.3 Energy by Land Use - Electricity <u>Unmittigated</u>

A Torre	Electricity Use 5	Total CO2	CH4	N20	CO2e
Land Use	\$ 25°		M.	m, cr	A section
Arena	5.9625e +006	943,8860	0.0784	0.0162	950.5636
		943,8860	0.0784	0.0162	

5.3 Energy by Land Use - Electricity Mitigated

	Electricity, El Use 15 Texas	Total CO2	CH4	31 N2O Y	(CO2e)
Land Use			, and a	MI SEC	(Value
Arena	5,9625e +006	943.8860	0.0784	0.0162	950.5636
Yotal		943.8860	0.0784	0.0162	950,5836

6.0 Area Detail

6.1 Mitigation Measures Area

Collegery Coll	200	t ROG	e Nox	(, co.)	802	Fugility Exhaust	PM10 Total	Fugilive PM2.5	Exhaust PM2.5	PM2.5 Total	Bio- CO2	NBio-CO2	Total CD2	CH4	N20	CO2e
005 003 005 005 005 005 005			7,0000	7.02000-	0.000	CONTRACTOR	100000-	(400)	3 0000a	3,0000-	0.0000	00134	00134	100 100 4 00000e-	0.0000	0.0142
005 003 005 005 005 005	Unmitigated	3.3209	7,0000e-	003 7.0200a-	0.0000	3,0000-	005 3.0000e-		005 3.0000e	005 3.0000e-	0.0000			005 4.0000e-		

53

5

--

Page 10 of 14

Date: 2/6/2015 4:47 PM

CalEEMod Version: CalEEMod.2013.2.2

7.1 Mitigation Measures Water

Page 11 of 14

Date: 2/6/2015 4:47 PM

6.2 Area by SubCategory <u>Unmitigated</u>

	ROG	11 NOx 1	# colu	502X	Fugility PM101	Exhquate PM10	Total T	Fugitive 3 PAL2.5	Exhaust PM2.5	PAI2.510 Total	8lo- CO2	NBIo-CO2	Total CO2	CH41	N20;	CO2e 1
SubCalegory &																
Architectural Coating	0.3911					0.0000	0.0000		0,0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0,0000
Consumer Products	2.9291					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	6.6000e+ 004	7.0000e+ 605	7.0200e- 003	0.6000		3.0000e- 005	3 0000a- 005		3.0000a- 005	3.0000a- 005	0.0000	0.0134	0.0134	4.000000 005	0.0000	0.0142
Total	3.3209	7.0000e- 005	7.0200e- 003	0.0000		3.0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005	0.0000	0.0134	0,0134	4.0000a- 005	0.0000	0.0142

Mitigated

	2003 2003	# NOX	801	502	Fugitive PM10	Exhaust PM10	PM101 y Total	Fugitive,	Exhaust PM2.61	PM2.5	Blo-CO2	NBio-CO2	Total CO2	CH4	N20	CO2e -
SubCategory *				1.4	lon Pari di	evr.		路位				分配的	M Gaz k	ķτ		
Architectural Coating	0.3911				·	0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0,0000	0.0000	0.0000
Consumer . Products	2.9291					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0,0000	0.0000	0.0000
Landscaping	5.6000e- 004	7.0000e- 005	7.0200e- 003	0.0000		3.0000e- 005	3.0000a- 005		3.0000e- 005	3.0000e+ 005	0.0000	0.0134	0.0134	4.0000e- 005	0.0000	0.0142
Total	3,3209	7,0000e- 005	7.0200 - 003	0.0000		3,0000e- 005	3.0000e- 005		3.0000e- 005	3.0000e- 005	0.0000	0.0134	0,0134	4,0000e- 005	0.0000	0.0142

7.0 Water Detail

	Total CO2	G141	100°	1C0265
Calegory and Caleg				
Unmitigated	390.6658	10.5514	0.2535	690.8405
Mitigated	390.6658	10.6495	0.2531	690,6770

7.2 Water by Land Use

	20.022	:		!	!
Arena	323.078 / 20.622	390.6858	10.5514	0.2535	690.8405
Land Use	Moni		M	M	
	Indoor/Out door Use	Total CO2	CH4	N20 *	CO2e

Page 12 of 14

Date: 2/6/2015 4:47 PM

CalEEMod Version: CalEEMod.2013.2.2

Page 13 of 14

Date: 2/8/2015 4:47 PM

7.2 Water by Land Use Mitigated

	Salar.	Indoor/Out door Use scattered	Total CO2	CH4	9 N2O V	2 CO204
ı	LandVes	Mgel #				1
i	Arena	323.078 / 20.622	390,6658	10.5495	0.2531	690.6770
	Total		390,6658	10,5495	0.2531	690,8770

8.0 Waste Detail

8.1 Mitigation Measures Waste

Category/Year

	Total CO2	O14 7	N20	C02e
		× M	lyr 	
Mitigated	4.1897	0.2476	0.0000	9.3895
Unmiligated	4.1897	0.2476	0.0000	9.3895

8.2 Waste by Land Use Unmitigated

	Waste : Disposed	лоы со2	CH4	(120.) (20.) (20.)	CO20 7
LandUse	100				
Arena	20.64	4.1897	0.2476	0.0000	9.3895
Total		4,1897	0.2476	0.0000	9.3895

Mitigated

Land Use	Disposed to tons		A S	*	200 M
Arena	20.64	4.1897	0.2476	0.0000	9.3895
Total		4.1897	0.2476	0.0000	9,3895

9.0 Operational Offroad

Equipment Type Load Factor Fuel Type Horse Power Load Factor Fuel Type

58

10.0 Vegetation

Page 14 of 14

Date: 2/8/2015 4:47 PM

CalEEMod Version: CalEEMod.2013.2.2

Page 1 of 14

Date: 2/6/2015 4:57 PM

GSW Mission Bay Non-Arena

. San Francisco County, Annual

1.0 Project Characteristics

1.1 Land Usage

CONCERNIAL Land Uses Ht Wast, 2019	Size 7	20st 45%	Metric State	Light College	Lot Acreege	Floor Surface Area	Population 3
THE REPORT OF THE PARTY OF THE	在中华的人工的企业工程的工作中的工作,但是一个企业工程的工作工程	2021445	THE RESERVE TEXAS	多级延慢为沙林	对于多种的的基本。然后	またないには他のないとうからかっただけでは、	SCHOOL THE SCHOOL
General Office Building	25,00	-	1000saft		0.57	25,000.00	. 0 1
Odildiai Onice culturily	20,00	•	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,				

1.2 Other Project Characteristics

Precipitation Freq (Days) Climate Zone

Utility Company

CO2 Intensity (lb/MWhr) N2O Intensity (Ib/MWhr)

1.3 User Entered Comments & Non-Default Data

Project Characteristics - CO2 intensity based on PG&E forecasting for Year 2017.

Land Use - Actual lot size including event center is 12 acres, CalEEMod default acreage values are used here since lot acreage only affects the construction equipment list, and construction emissions are calculated outside of CalEEMod. Architectural Coating -

Energy Use - Title 24 eletricity and natural gas energy intensities have been adjusted for 2013 standards per CEC report: http://www.energy.ca.gov/2013publications/CEC-400-2013-008/CEC-400-2013-008.pdf

Construction Phase - Construction emissions determined outside of CalEEMod

Off-road Equipment -

Page 2 of 14

Date: 2/8/2015 4:57 PM

A Table Name	Column Name 1	Default Value 100 100 100	New Value 18 19 19 19
tblConstructionPhase	NumDays	10.00	0.00
tbÆnergyUse	T24E	5.01	3.92
tbÆnergyUse	T24NG	19.28	16.04
tbiProjectCharacteristics	CO2IntensityFactor	. 641,36	349
tbiProjectCharacteristics	OperationalYear	2014	2017

2.0 Emissions Summary

252597987898	TO ROG TO	AL NO.	'₹ co⊕¢	¥ 8023	Funitive	Exhaust	₩ PM10.20	Fugitive:	Exhaust)	PM2.5	Bio-CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Y27-2-5	Transition.	3024 1750	11.44	18.00	# PM10 /-	Ø PM10 ₺	# Total	PM2.5	3 PM2.5 3	Total	46100	1	de suise	X 14	130	State 1983
22 CH 24 CA	2. S. O. A.	11 X 3 1 X 12	The sound	200	100 miles	建设工业	241447	(大学年代)	V 10 95	はおける	100	45444	Section 2	2300	3,752,000	1,420,243
Percent	0.00	0.00	0.00	0,00	0.00	0.00	0,00	0,00	0.00	0.00	0.00	0.00	0.00	0.00	0.004	0.00
Reduction	1 *	0.00	*	,			*				****					
		l	ı	1			1		1					1		

CalEEMod Version: CalEEMod.2013.2.2

Page 3 of 14

Date: 2/6/2015 4:57 PM

2.2 Overall Operational Unmitigated Operational

	POG	NOV	CO	502	Fugitive 6 PM10	Exhausts PM1011	PM18 Total	Fugitive : PMZ.5	Exhaust PM2.6	PM2.5 Total V	Blo-CO2	NBio-CO2	Total CC2	T CHA	el N2O	1 CO2
Category 4				1												
Area	0,1107	0,0000	2.3000a- 004	0.0000		0,0000	0.0000		0.0000	0.0000	0.0000	4.5000e+ 004	4.5000e- 004	0.0000	0.0000	4.7000e 004
Energy	2,3000a- 003	0.0209	0.0176	1.3000e+ 004		1.5900a- 003	1.5900e- 003		1.5900e- 003	1.5900e- 003	0.0000	73.3639	73.3639	4.6400e- 003	1.2900e- 003	73.8605
Mobile	0.1229	0.2851	1.1702	2.7200a+ 003	0.1884	4.0600e+ 003	0.1925	0.0511	3.7500e- 003	0.0548	0.0000	207.0012	207.0012	8.5300a 003	0.0000	207.190
Wests						0.0000	0.0000		0.0000	0.0000	4.7195	0.0000	4.7195	0.2789	0.0000	10,5769
Water						0.0000	0.0000		0.0000	0.0000	1.4097	5.3150	6,7247	0.1452	3.5100e- 003	10,8626
Total	0.2359	0.2860	1.1969	2.8500e- 003	0.1884	5,8700e- 003	0,1941	0.0511	5,3400e- 003	0.0564	6.1292	285,6806	291.8098	0.4373	4.5000e- 003	302.4807

62

Page 4 of 14

Date: 2/8/2015 4:57 PM

2.2 Overall Operational Mitigated Operational

	ROGA	Ž.	188	5022 40022	Fugitive PM101		SPM10 AS A Total	Fugitive X PM2.5	Exhaust 4 PM2.5 c	PM2.5% Total S	Blo-CO2	NBIo-CO2	Total CO2	CH40	120	/2CO2+1
Category						***							No.			
Area .	0,1107	0.0000	2.3000e+ 004	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	4.5000e- 004	4.5000e- 004	0.0000	0.0000	4.7000e- 004
Energy	2.3000e- 003	0.0209	0.0176	1,3000e- 004		1.5900e- 003	1.5900e- 003		1,5900e- 003	1.5900a- 003	0.0000	73.3639	73.3639	4.6400a- 003	1.2900e- 003	73.8605
Mobile	· 0.1229	0.2651	1.1792	2.7200s- 003	0.1884	4.0800e- 003	0.1925	0.0511	3.7500e- 003	0.0548	0.0000	207.0012	207.0012	8.5300e- 003	0.0000	207.1804
Waste			,			0.0000	0.0000		0.0000	0.0000	4.7195	0.0000	4,7195	0.2789	0.0000	10,5766
, Water						0.0000	0.0000		0.0000	0.0000	1.4097	5.3150	6.7247	0.1452	3,5000a- 003	10.8603
Total	0,2359	0.2860	1,1969	2.8500e- 003	0.1884	5.6700e- 003	0.1941	0.0511	5,3400e- 003	0,0564	6.1292	285,6806	291.5098	0,4373	4,7900e- 003	302.4784

**************************************	ROG	NOx/	CO	502	Fugitive PM10	PM107	PM10 Total	PM2.5	Exhaust PM2.5	PM2.5 Total	Ble-CO2	NBIo-CO2	Total CO2	CH4	N20	CO2•
Percent Reduction	0.00	0.00	0,00	0,00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0,00	0.00	0,01	0.21	0.00

3.0 Construction Detail

Construction Phase

	Phase Number	Phase Name	Phase Type	Start Date	End Date	Num Days Week	Num Days	Phase Description
ſ	1	Demolition	Demolition	1/1/2015	12/31/2014	5	0	

Acres of Grading (Site Preparation Phase): 0

CalEEMod Version: CalEEMod.2013.2.2

Page 5 of 14

Date: 2/6/2015 4:57 PM

Acres of Grading (Grading Phase): 0

Acres of Paving: 0

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 0; Non-Residential Outdoor: 0 (Architectural Coating - sqft)

OffRoad Equipment

Classe Hours & Horse Powers Confeded Equipment Type (1985) Amount Classe Hours & Horse Powers & Load Factor (5)

Trips and VMT

Phase Name . Offroad Equipment . Worker Trip: 	COMPANY DESCRIPTION OF THE PROPERTY OF THE PARTY OF THE P	AND AND ARRESTS ARRESTS AND AR	1 107 P. C.

- 3.1 Mitigation Measures Construction
- 4.0 Operational Detail Mobile
- 4.1 Mitigation Measures Mobile

A CAMPAGE	ROG1	NOx +	**CO**	#2 SO2 ₩	Fugitive:	Exheust PM10	PM10 / Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	8io-CO2	NBlo-CO2	Total CO2	CH4	€ N2O:	(CO2e :
Calegory,	28.48 Mil	ÇM.	, , , , , , , , , , , , , , , , , , ,	ALK SA	ton	elyr		10.	35 (35)				M G (s)	ivr		
Mitigated	0.1229	0.2651	1.1792	2.7200e- 003	0.1654	4:0800e- 003	0.1925	0.0511	3.7500e- 003	0.0548	0.0000	207.0012	207,0012	8,5300e- 003	0,0000	207,1604
Unmitigated	0.1229	0.2651	1.1792	2.7200e- 003	0.1884	4.0800e- 003	0.1925	0.0511	3.7500e- 003	0,0548	0.0000	207.0012	207.0012	8.6300e- 003	0.0000	207.1804

Page 6 of 14

Date: 2/6/2015 4:57 PM

4.2 Trip Summary Information

SECRETARIA DE LA PROPERTO DE LA PERSONA DE L	集機構。研究完全Ave	rage Dally Trip Ro	ito Environment	を記述を表示 Unmitigated 機能機能	はおかれている。Miligaled に配合いている。
Land Use 148 48	Weekdayloo	Saturday	Sunday 2	Annual VMT	THE ST Annual VMT
General Office Building	275.25	59.25	24.50	498,434	498,434
Total	275.25	59.25	24.50	498,434	498,434

4.3 Trip Type Information

		m Mios	電影な	100	学、T中 %	A PROPERTY.	MARKET	Trip Purpoe	0 X
和智慧的Land Use 附近的	H-W or C-W	H-S or C-C;	H-O or C-NW.	H-W or C-W	H-S or C-C	H-O or C-NW	© (Primary)	Diverted #	Pass-by
General Office Building	9.50	7.30	· 7.30	33.00	48.00	19.00	77	19	4

LDALDT1	LDT2	MDV : X LHD	1 LHD2	MHD	HHD4.	्र OBUS ह	y UBUS 🦮	MCY:	SBUS :	MH
			0.003331		0.003903					

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

CalEEMod Version; CalEEMod.2013.2.2

Page 7 of 14

Date: 2/6/2015 4:57 PM

	ROG	NOX#	# CO	502 h	Fugitive a CEPM 10 at The COMB	Exhaunt (PM10*	Fugitive (Exhaust 9 PM2.51	PM2.5	Blo-CO2	NBio-CO2	Total CO2	CH4	5 N20 *	CO2e
2 Category Ref					A SO								M T			
NaturaiGas Mitigated	2.3000e- 003	0.0209	0.0176	1.3000e- 004		1,5900e- 003	1.5900e- 003		1.5900e- 003	1,5900e- 003	0.0000	22.7463	22.7483	4.4000a- 004	4.2000e- 004	22.8848
NaturalGas Unmitigated	2.3000e- 003	0.0209	0.0176	1.3000e- 004		1.5900e .003	1.5900e- 003		1,5900e+ 003	1,5900a- 003	0.0000	22.7463	22.7463	4.4000e- 004	4,2000e- 004	22.8848
Electricity Miligated				}		0.0000	0.0000		0.0000	0.0000	0.0000	50.6176	50.6176	4.2100e- 003	8.7000a+ 004	50.9757
Electricity Unmitigated						0.0000	0.0000	·	0.0000	0.0000	0.0000	50.6176	50.6178	4.2100e- 003	8.7000o- 004	50.9757

5.2 Energy by Land Use - NaturalGas

Unmitigate

15:37	NaturalGa Se Usa	ROG	NOx *	CO	302	Fugilive PM10	Exhaust . PM10	PM10: Total	Fugitive PM2.5	Exhaust PM2.6	PM2.5 Total	Blo-CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
Land Use	MATUAN	施斯	清禁			lor C	1 7	58.0					· 注题数	19 H	TAT:	AND THE	
General Office Building	426250	2.3000e- 003	0.0209	0.0176	1.3000s- 004		1.5900e- 003	1,5900e+ 003		1.5900e- 003	1.5900e- 003	0.0000	22,7463	22.7483	4.4000a- 004	4.2000e- 00-4	22.5848
Total		2.3000e- 003	0.0209	0.0176	1,3000e- 004		1.5900e- 003	1.5900e- 003		1.5900e- 003	1,5900e- 003	0,0000	22,7463	22.7463	4.4000e-	4.2000a- 004	22.8848

Page 8 of 14

Date: 2/6/2015 4:57 PM

CalEEMod Version: CalEEMod.2013.2.2

Page 9 of 14

Date: 2/6/2015 4:57 PM

5.2 Energy by Land Use - NaturalGas

Mitigated

	NaturalGa s Use a	ar Rod	No.	300k	1884	Fuotive Pi PM10 M	Exhaust 9	PM10 ** Total #	Fugitive? SPMZ 6 w	Exhaust's PMZ.57 PMZ.57	PM2.5	Blo-CO2	NBio-CO2	Total CO2	4 CH4 2	N2O	5 CO2e 3
Land Use	IGTUA					lon V											
General Office Building	426250	2.3000e- 003	0.0200	0,0176	1.30004- 004		1.5900e- 003	1.5900e- 003		1.5900e- 003	1,5900e- 003	0.0000	22.7463	22.7463	4.4000e- 004	4,2000e+ 004	22.8548
Total	. :	2.3000e- 003	0.0209	0.0176	1.3000a- 004		1.5900e- 003	1,5900e- 003		1.5900e- 003	1.5900e- 003	0,0000	22,7463	22.7463	4.4000e- 004	4.2000e- 004	22.8848

5.3 Energy by Land Use - Electricity

Total		50.6176	4.2100e- 003	8.7000e- 004	50,9757
General Office Building	319750	50.6176	4.2100a- 003	8.7000e- 004	60.9757
Land Use 4	\$ 14 \$ 24 \$ 25 \$ 25 \$ 25 \$ 25 \$ 25 \$ 25 \$ 25 \$ 25		***		
	Electricity of Use 17 3031454	Total CO2	CH4 L	NZO.	0024

5.3 Energy by Land Use - Electricity Mitigated

	Electricity:	Total CC2	S CH46	1 N2O (CO2eF
(in) Land Use in	KWINT!			Y A	
General Office Building	319750	50.6176	4.2100a- 003	8.7000e- 004	50.9757
Total		\$0.6176	4.2100e- 003	8.7000e- 004	50.9757

6.0 Area Detail

6.1 Mitigation Measures Area

20 P. C.	ROG	NOx	, co\.	802	Fugitive Exhaust PM10 PM10	PM10 Total	Fugilive PM2.5	Exhaust (PM2.6	PN2.5	Bio-CO2	NBio-CO2	Total CO2	2 CH4	N2O	COZe
Category	1	. 101	Narr		tomelyr	1 W. J.		V Figh			***	MI Company	Military Harrison	Mr.	419
Mitigated	0.1107	0.0000	2.3000a- 004	0.0000	0,0000	0.0000		0.0000	0.0000	0.0000	4.5000e- 004	4.5000e- 004	0.0000	0.0000	4.7000e- 004
Unmitigated	0.1107	0.0000	2.3000e- 004	0.0000	0.0000	0.0000		0.0000	0.0000	0.0000	4.5000e- 004	4.5000e- 004	0.0000	0,0000	4.7000e- 004

Page 10 of 14

Date: 2/6/2015 4:57 PM

CalEEMod Version: CalEEMod.2013.2.2

Page 11 of 14

Date: 2/6/2015 4:57 PM

6.2 Area by SubCategory

Unmitigated

	ROG L	WINOX III	* co*	# 502 ti	Fugitive - SPM107	Exhoust PM10 N	PM10 X	Fooltive a F PM2.5		PM2.5		NBIo-CO2	Total CO2	CH4#	C 120 g	CO20 4
SubCategory II																
Architectural Coating	0.0130					0,0000	0.0000		0.0000	0.0000	0.0000	0,0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	0.0976					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	2.0000e- 005	0.0000	2.3000e- 004	0.0006	,	0.0000	0.0006		0.0000	0.0000	0.0000	4.5000e- 004	4.5000a- 004	0.0000	0.0000	4.7000e- 004
Total	0.1107	0.0000	2,3000±- 004	0.0000		0.0000	0.0000		0.0000	0.0000	0,0000	4.5000e- 004	4.5000e- 004	0,0000	0.0000	4.7000e- 004

Mitigated

distri	ROG	NOx.	, co	S02 C	Fugility PM10	Exhaust PM10*	PM10 Total	Fugitive PM2.5	Exhaust PM2.5	PM2.5 Total	Blo-CO2	NBIo-CO2	Total CO2	CH4	N2O	CO2e
SubCategory :					ton	en er i Lectur		u e incess			7-455 (43.44		, M	Wr.	ing in the second	
Architectural Conting	0.0130	·				0.0000	0,0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	0.0976					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	2.0000a- 005	0.0000	2.3000a- 004	0,0000		0.0000	0.0000		0.0000	0.0000	0,0000	4.5000a- 004	4.5000e- 004	0.0000	0.0000	4.7000e- 004
Total	0,1107	0.0000	2.3000e- 004	0.0000		0,0000	0.0000		0.0000	0.0000	0,0000	4.5000e- 004	4.5000 e- 004	0,0000	0.0000	4.7000e- 004

7.0 Water Detail

7.1 Mitigation Measures Water

	Total CO2	ECH SE	#N20	C02. Y
Calegory (A				
Unmitigated	6.7247	0.1452	3.5100e- 003	10.8626
Mitigated	6.7247	0.1452	3.5000e- 003	10.8803

7.2 Water by Land Use Unmitigated

Total		6,7247	0.1452	3.5100e- 003	10,8626
General Office Building	4.44334 / 2.72334	6.7247	0.1452	3.5100e- 003	10.8526
Land Use	Monle		10 M	Toril	
	Indeor/Out door Use	Total CO2	CH42	200	CO20

70

...

Page 12 of 14

Date: 2/8/2015 4:57 PM

7.2 Water by Land Use Mitigated

Total		6,7247	0,1452	3.5000e- 003	10.8603
General Office Building	4.44334 / 2.72334	6.7247	0.1452	3.5000e- 003	10.8603
Land Use	Mode				
	Indoor/Out door Use 42/04/2020	Total CO2	CH416		G CO2e

8.0 Waste Detail

8.1 Mitigation Measures Waste

Category/Year

all with	Total CO2	CH4	N20-	C02+1
747.7 2014.64		, M	Mr.	
Misgated	4.7105	0.2789	0.0000	10,5758
Unmiligated	4.7195	0.2789	0.0000	10,5768

CalEEMod Version: CalEEMod.2013.2.2

Page 13 of 14

Date: 2/6/2015 4:57 PM

8.2 Waste by Land Use Unmitigated

INS	Waste & Disposed	Total CO2	SCH4#	2120	CO2e i
ALL Land Use set	(lone?			AT AT	
General Office Building	23.25	4.7195	0.2769	0.0000	10.5768
Total		4.7195	0.2789	0.0000	10.5768

<u>Mitigated</u>

Total		4.7195	0.2789	0.0000	10,5768
General Office Building	23.25	4.7195	0.2789	0.0000	10.6768
Land Use	e tore	数数	MALE M	W.	
Marie	Waste Disposed	Total CO2		N20	7 CO2.

9.0 Operational Offroad

Equipment Type	Number Houre/Day	Days/Year	Horse Power	Load Factor	Fuel Type

72

Page 14 of 14

Date: 2/8/2015 4:57 PM

10.0 Vegetation

CalEEMod Version: CalEEMod.2013.2.2

Page 1 of 13

Date: 2/6/2015 5:01 PM

GSW Mission Bay Non-Arena

San Francisco County, Annual

1.0 Project Characteristics

1.1 Land Usage

SERVED LAND USes Company	STATE AND SECURE AND	College The Metric and State of	Lot Acreage X	Floor Surface Area on	Population //
Enclosed Parking with Elevator	475,00	1000sqft	10.90	475,000.00	0

1.2 Other Project Characteristics

Precipitation Freq (Days) Urbanization Climate Zone

Utility Company Pacific Gas & Electric Company

0.029 N2O Intensity (Ib/MWhr)

1.3 User Entered Comments & Non-Default Data

Project Characteristics - CO2 intensity based on PG&E forecasting for Year 2017.

Land Use - Actual lot size including event center is 12 acres. CalEEMod default acreage values are used here since lot acreage only affects the construction equipment list, and construction emissions are calculated outside of CalEEMod.

Architectural Coaling -

Energy Use - Title 24 eletricity and natural gas energy intensities have been adjusted for 2013 standards per CEC report: http://www.energy.ca.gov/2013publications/CEC-400-2013-008/CEC-400-2013-008.pdf

Construction Phase - Construction emissions determined outside of CalEEMod

Off-road Equipment -

Page 2 of 13

Date: 2/6/2015 5:01 PM

Table Name of the state of	Column Name	Default Volue Parket	New Value 312 454
tbiConstructionPhase	NumDays	20.00	0,00
lblEnergyUse	T24E	3.92	3.07
tblProjectCharacteristics	CO2IntensityFactor	641,35	349
tblProjectCharacteristics	OperationalYear	2014	2017

2.0 Emissions Summary

		ROGE	MOx!	* 60 II	502 ×	Fugitive, I PM10	Exhaust PM105	PM10 LTotal	Fugitive PH2.5		PM2.5 Total	Blo-CO2	NBIo-CO2	Total CO2	CH43	10 190 20	C02e
i	Percent Reduction	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

2.2 Overall Operational

Unmitigated Operational

	H ROG	NO.	, co	902	Fugitive PM10	Exhaust v	PM10,0	Pugiliye PM2.5	Exhaust PM2.61	PM2.5 Total	Blo-CO2	NBIo-CO2	Total CO2	CH4	N2O	CO2e
Calegory			en joe e		7. 46 S	en in	然			然期 。		為機	M.	M.		
Area	2.1032	4.0000e- 005	4.4500e- 003	0.0000		2.0000e+ 005	2.0000a+ 005		2.0000e- 005	2.0000e- 005	0.0000	8.4900e- 003	8.4900e- 003	2.0000e- 005	0.0000	8.9800e- 003
Energy	0.0000	0.0000	0.0000	0.0000	 	0.0000	0.0000		0.0000	0.0000	0.0000	442.8943	442.8943	0.0368	7,6100a- 003	446.0275
Mabile	0.0000	0.0000	0.0000	0.0000	0.0000	D.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0,0000	0.0000	0.0000	0.0000	0.0000
Waste						0.0000	0.0000		0.0000	0.0000	0.0000	0,0000	0.0000	0.0000	0.0000	0.0000
Water						0.0000	0.0000		0.0000	0.0000	0.0000	0,0000	0.0000	0.0000	0.0000	0.0000
Total	2.1032	4.0000e- 005	4,4500e- 003	0.0000	0,0000	2.0000e- 005	2.0000e- 005	0.0000	2.0000e- 005	2.0000e- 005	0,0000	442.9028	442,9028	8820.0	7.6100e- 003	446,0365

CalEEMod Version; CalEEMod.2013.2.2

Page 3 of 13

Date: 2/6/2015 5:01 PM

2.2 Overall Operational Mitigated Operational

	ROGA	g Noxe	00	502±	PM10	Exhaust, PM10	PM107 Total 6	Fugitive PM2.5	Exhausts PM2.61	PM2.5 Tolen	Bio-CO2	NBIo-CO2	Total CO2	CH4C	1000	CO26
Calegory &																
Area	2.1032	4.0000e+ 005	4.4500e- 003	0,0000		2.0000e- 005	2.0000e- 005		2,0000a- 005	2.0000e- 005	0.0000	8,4900e+ 003	8.4900a- 003	2.0000a+ 005	0.0000	8.9800
Energy	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	442.8943	442.8943	0.0348	7,6100a- 003	448.02
Mobile	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.000
Weste	k					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0,0000	0.0000	0.000
Water						0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0,0000	0.0000	0.0000	0,000
Total	2.1032	4,0000e- 005	4.4500e- 003	0.0000	0.0000	2.0000e- 005	2.0000e- 005	0.0000	2,0000e- 005	2.0000e+ 005	0.0000	442,9028	442.9028	0.0368	7.6100e- 003	446.03

2500	ROG =	NOX.1	5 7 10 AFRA	302	FM102	Exheust PM10	Total .	Fugitive PM2.5	Exhauet PM2.5	PM2.5 Total	Blo-CO2	NBIo-CO2	Total CO2			AC02•
Percent Reduction	0.00	0,00	0.00	0.00	0,00	0.00	0.00	0.00	0.00	0,00	0.00	0.00	0.00	0.00	0,00	0.00

3.0 Construction Detail

Construction Phase

Phas Numb	er Phase Name	Phase Type	Start Dale	End Date	Num Days Week	Num Days	Phase Description
1	Domolition	Demolition	1/1/2015	12/31/2014	5	. 0	

Acres of Grading (Site Preparation Phase): 0

Page 4 of 13

Date: 2/6/2015 5:01 PM

Acres of Grading (Grading Phase): 0

Residential Indoor: 0; Residential Outdoor: 0; Non-Residential Indoor: 0; Non-Residential Outdoor: 0 (Architectural Coating - sqft)

OffRoad Equipment

Acres of Paving: 0

Phase Name And Control Equipment Type (Amount 2005 Supplement Sup

Trips and VMT

Phase Name Officed Equipment Worker Trip Number Number		

3.1 Mitigation Measures Construction

4.0 Operational Detail - Mobile

4.1 Mitigation Measures Mobile

eranemer av	ROG 1 13 NOX 1	# colt	\$ \$02 ×	Fugitive PM10	Exhaust PM10	PM10.55 Total	Fugitive 3 PM2.5	Exhquat PM2.5	PM2.5 5" Total			Total CO2	COH4	/a N2O +c	∨ CO2e
Category,		rit. To	e de la proposición de la companya d	lon T	mlyr Sir 191		ž,			5	el cer	M	M		W.L.
. Miligated . 0.	.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Unmitigated 0.	.0000 0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

CalEEMod Version: CalEEMod.2013.2.2

Page 5 of 13

Date: 2/8/2015 5:01 PM

4.2 Trip Summary Information

\$400.00 (\$100.00 (\$3.00.00))	PER ALLEM AVO	rage Dally Trip Ra	lo Propins	AND PARTY Unmitigated	HANGER Miligated Average 1924
Is any and Decker Land Use No. 1915	Weekday 1	Saturday	Sunday States	AND Annual VMT St.	Annual VMT
Enclosed Parking with Elevator	0.00	0.00	0.00		
Total	0.00	0.00	0.00		

4.3 Trip Type Information

"那么 不知何是我们的									
+ FFC PARC Land Use U 417 500	H-W or C-W	(H-S or C-C	H-O or C-NW	H-W.or.C-W	H-Sor C-C	H-O or C-NWI	常 Primary/客	Diverted of	Pase-by Frage
Enclosed Parking with Elevator	9.50	7.30	7.30	0.00	0,00	0.00	0	0	0

ELDA ELDA ELDT E ELDT E ELDT E ELHO E ELHO E ELHO E ELHO E ELBUS E	MH (
	Co
0.627987 0.058543 0.149166 0.078755 0.026467 0.003331 0.026417 0.003903 0.003129 0.011009 0.010235 0.000550	0,000507

5.0 Energy Detail

Historical Energy Use: N

5.1 Mitigation Measures Energy

Page 6 of 13

Date: 2/6/2015 5:01 PM

	e ROO	E INOX 49	CO.	S 5021	LFugitive?	Exhaust 2 % PM10 22 FEEL COME	E PM10 & Frotal C		PM2.53P SATotal II	Blo-CO2	NBio-CO2	Total CC2	CH46	N2OK	CC2e
Category C															
NaturalGas Mitigated	0,0000	0.0000	0.0000	0.0000		0.0000	0,0000	0,0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
NaturalGas Unmitigated	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000	 0,0000	0.0000	0.0000	0,0000	0.0000	0.0000	0.0000	0.0000
Electricity Mitigated						0.0000	0.0000	 0.0000	0.0000	0.0000	442.8943	442.5943	0.0388	7.6100e- 003	448.0275
Electricity Unmitigated			:			0.0000	0.0000	 0.0000	0.0000	0.0000	442.8943	442.8943	0.0368	7.6100e- 003	448.0275

5.2 Energy by Land Use - NaturalGas Unmitigated

Nature 7 a Uni	Ge ROG	¥0x	7,00	.302	Fugitive: PM10	Exhaust of PM10	PM10 : Total (Fugitive	Exhaust PM2.61	PAI2.5 Total		NBIo-CO2	2.78		120	,CO2s
Land Users NBTU					lon 1	**	19									
Enclosed Parking 0 with Elevator	0.0000	0.0000	0.0000	0.0000		0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total	0.0000	0.0000	0.0000	0.0000		0.0000	0,0000		0.0000	0,0000	0.0000	0.0000	0.0000	0.0000	0,0000	0.0000

CalEEMod Version: CalEEMod.2013.2.2

Page 7 of 13

Date: 2/6/2015 5:01 PM

5.2 Energy by Land Use - NaturalGas Mitigated

	NaturalGe as Use	T ROOK	NOx S	COV	5021	Fugitive 2 Ex PM10 # EP	haust (M10 pt	PM10 av	Fugility FPM2.5	Exhaust (PM2.5)	PM2.6	Blo-CO2	NBIo-CO2	Total CO2	#CH43	N20	C02
St Land Use St	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1												y,			野 樹	
Enclosed Parking with Elevator	0	0.0000	0.0000	0.0000	0,0000	0.0	0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Total		0.0000	0.0000	0.0000	0.0000	0.0	0000	0.0000		0.0000	0.0000	0,0000	0.0000	0,0000	0.0000	0.0000	0,0000

5.3 Energy by Land Use - Electricity Unmitigated

Land Use >n	Electricity Use 27 KWN/y	Total CC2	+ CH4	NZO:	CO2e
Enclosed Parking with Elevator	2.79775e +006	442.8943	0.0368	7,6100e- 003	448.0275
Total		442,8943	0.0358	7.5100e+ 003	446.0275
			l		

79

Page 8 of 13

Date: 2/6/2015 5:01 PM

5.3 Energy by Land Use - Electricity Mitigated

Total		442,8943	0.0368	7.6100e- 003	448.0275
Enclosed Parking with Elevator	2,79775e +008	442.8943	0,0368	7.6100o- 003	448.0275
all Cand Use	S. KWINT				
	Electricity Use 33	Total CO2	CH4	N2O#	CO247

6.0 Area Detail

6.1 Mitigation Measures Area

1.566	ROG	110x	8	, SO2	Fugilize PM10	Exhaust PM10	PM10 Total	Fugilive PM2.5	Exhaust PM2.5		Blo-CO2	NBio-CO2	松 种。	CH4	NZO (CO26
Category as			No Hou	Mile St	lon - No SV			NA.		2,00000-	0.0000	8.4900e+	8.4900e-	01 2.0000a	0.0000	8.9800a+
Mitigated	2.1032	4.0000a- 005	4,4500a- 003	0.0000		2.0000e+ 005	2.0000e- 005		2.0000a- 005	005		003	003	.005		003
Unmitigaled	2,1032	4.0000e- 005	4,4500e- 003	D.0000		2,0000e- 005	2.0000e- 005		2.0000e- 005	2.0000e- 005	0.0000	8.4900e- 003	8.4900e- 003	2.0000e- 005	0.0000	8.9300a 903

CalEEMod Version: CalEEMod.2013.2.2

Page 9 of 13

Date: 2/6/2015 5:01 PM

6.2 Area by SubCategory <u>Unmitigated</u>

4652	ROOP	No	88	502W	Exhedeta PM10 PM10			Exhaust PAZ 5	PM2.5±	Blo-CO2	NBio-CO2	Total CO2	# CH4 F	P N20	CO2ec
SubCategory (
Architectural Coating	0.2477				0.0000	0.0000		0.0000	0.0000	0,0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	1.8551				0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	4.3000e- 004	4.000000 006	4.4500o- 003	0.0000	 2.0000o+ 005	2.0000e- 005		2.0000e- 005	2.0000e- 005	0.0000	8.4000e- 003	8.4900e- 003	2.0000e- 005	0,0000	8.9800e- 003
Total	2.1032	4.9000e- 005	4.4500e- 003	0.0000	2.0000e+ 005	2.0000e- 005		2.0000e- 005	2.0000e- 005	0.0000	8,4900e- 003	8.4900e- 003	2,0000e- 005	0.0000	8.9800e- 003

Mitigated

15	y ROG	NOx 2	CO 4	302	Fugitive PA110	Exhaust PM10	PM10 (Total	Fugitive ; PM2,5	Exhaust PM2.6	PM2.5 Total	Bio-CO2	NBio-CO2	Total CO2	CH4	N20	CO2e
SubCategory					dig lon	e y r					海 源		W PA	M.		行響
Architectural Coating	0.2477					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Consumer Products	1.8551					0.0000	0.0000		0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
Landscaping	4.3000e- 004	4,0000a- 005	4.4500e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2.0000a- 005	0.0000	8,4900a- 003	8,4900e- 003	2.0000e- 005	0.0000	8.9800a- 003
Total	2.1032	4,0000e- 005	4.4500e- 003	0.0000		2.0000e- 005	2.0000e- 005		2.0000e- 005	2,0000e- 005	0.0000	8,4900e- 003	8.4900e- 003	2,0000e- 005	0.0000	8,9500e- 003

7.0 Water Detail

Page 10 of 13

Date: 2/8/2015 5:01 PM

CalEEMod Version; CalEEMod.2013.2.2

Page 11 of 13

Date: 2/8/2015 5:01 PM

7.1 Mitigation Measures Water

Mitigated	0.0000	0.0000	0.0000	0.0000
Unmitigated	0.0000	0.0000	0.0000	0.0000
Calegory				
	Total CO2	CH4X	120	V CO2e 19

7.2 Water by Land Use Unmitigated

Land Use	Months of the second		MIT A	****	
Enclosed Parking with Elevator	0/0	0.0000	0.0000	0.0000	0.0000
Total		0,0000	0.0000	0.0000	0.0000

7.2 Water by Land Use Mitigated

	Indoor/Out door Use de Sal And	Total CC2	CH4	N2O*	CO2
Land Use 18	X 93				
Enclosed Parking with Elevator	0/0	0,0000	0.0000	0,0000	0.0000
Total		0.0000	0.0000	0,0000	0.0000

8.0 Waste Detail

8.1 Mitigation Measures Waste

Category/Year

	Total CO2	CH42	H NZO	CO2e
4	W. W.	Y 2 M	(Artis year)	***
Mitigated	0.0000	0.0000	0.0000	0.0000
betegitimnU	0,0000	0.0000	0,0000	0.0000

Page 12 of 13

Date: 2/6/2015 5:01 PM

CalEEMod Version; CalEEMod.2013.2.2

10.0 Vegetation

Page 13 of 13

Date: 2/6/2015 5:01 PM

8.2 Waste by Land Use Unmitigated

	Weste W Disposed	Total CO2	WOULE SERVICE	N2O.	C020
Land Use will					
Enclosed Parking with Elevator	. 0	0,0000	0.0000	0.0000	0.0000
Total		0,0000	0.0000	0.0000	0.0000

Mitigated

Total		0.0000	0,0000	0.0000	0.0000
Enclosed Parking with Elevator	۰	0.0000	0.0000	0.0000	0.0000
Lond Use	tone		M		
	Weste Disposed	Total CO2	CT 4	N2O ₁	CO2e

9.0 Operational Offroad

Equipment Type (1) You Number	Horse Power Load Factor Fuel Ty	

ATTACHMENT 3

Revised Addendum to Application for Environmental Leadership Development Project (Submitted March 16, 2015)

March 16, 2015

Ken Alex, Governor's Office of Planning and Research Kurt Karperos, California Air Resources Board

Re: Greenhouse Gas Emissions Offset Commitments

Dear Mr. Alex and Mr. Karperos:

This letter is a supplement to the application filed on February 19, 2015 by GSW Arena LLC (the "Project Sponsor"), an affiliate of Golden State Warriors, LLC, which entity owns and operates the Golden State Warriors National Basketball Association team, and is the project sponsor of the Golden State Warriors event center and mixed-use development project located at Blocks 29-32 in the South Mission Bay Area of San Francisco (the "Project").

As you know, the Project Sponsor has applied for certification by the Governor as a leadership project under the Jobs and Economic Improvement Through Environmental Leadership Act of 2011, as amended (collectively, "AB 900" or the "Act"). The application includes projected emissions for the Project that show certain projected net additional emissions of greenhouse gases as a result of the construction of the Project and as a consequence of Project operations. The Project Sponsor agrees to meet the requirement set forth in California Public Resources Code Section 21183 (c), which requires that the Project demonstrate that it will not result in net additional emissions of greenhouse gases, through the acquisition of voluntary carbon credits sufficient to offset all projected additional emissions, in the following manner:

1. No later than six (6) months after the issuance of a Temporary Certificate of Occupancy for the Project, the Project Sponsor shall provide to the lead agency, the Office of Community Investment and Infrastructure ("OCII"), a calculation of the net additional emissions resulting from the construction of the Project (the "Construction Emissions"), to be calculated in accordance with the methodology agreed upon by the Air Resources Board (ARB) in connection with the AB 900 certification of the Project (the "Agreed Methodology"). Project Sponsor shall provide courtesy copies of the calculations to the ARB and the Governor's Office promptly following transmittal of the calculations to CCII. Project Sponsor shall enter into one or more contracts to purchase voluntary carbon credits from a qualified greenhouse gas emissions broker in an amount sufficient to offset the Construction Emissions. The Project Sponsor shall provide courtesy copies of any such

SNBA

GOLDEN STATE WARRIORS • NATIONAL BASKETBALL ASSOCIATION 1011 Broadway • Oakland, CA 94607-4019 510.986.2200 • 1-888-GSW-HOOP • warriors.com

March 16, 2015 Page 2

contracts to the ARB and the Governor's Office promptly following the execution of such contracts.

2. No later than six (6) months after Project Stabilization, to be defined as the date following Project completion when the Project is ninety percent (90%) leased and occupied (and with respect to the arena component, of the Project, ninety percent (90%) of the available booking dates are utilized), the Project Sponsor shall submit to OCII a projection of operational emissions arising from the Project, based on data accumulated to that date and reasonable projections of operational emissions for the useful life of the Project of [thirty (30)] years, to be calculated in accordance with the Agreed Methodology (the "Operational Emissions"). The Project Sponsor shall provide courtesy copies of the calculations to the ARB and the Governor's Office promptly following transmittal to OCII. Project Sponsor shall enter into one or more contracts to purchase voluntary carbon credits from a qualified greenhouse gas emissions broker in an amount sufficient to offset the Operational Emissions, on a net present value basis in light of the fact that Project Sponsor is proposing to acquire such credits in advance of any creation of the emissions subject to the offset. The Project Sponsor shall provide courtesy copies of any such contracts to the ARB and the Governor's Office promptly following the execution of such contracts.

The commitments outlined herein will be incorporated into the the Project's Final Subsequent Environmental Impact Report (FSEIR) as a proposed improvement measure. The Project Sponsor will agree to comply with all improvement measures and mitigation measures contained in the FSEIR through the Project's Mitigation Monitoring and Reporting Program, which represents a binding and enforceable agreement with the Project's lead agency, the Office of Community Investment and Infrastructure (OCII).

Please do not hesitate to call if you have any questions.

Sincerely,

David Kelly

General Counsel, GSW Arena LLC

101887198.3

ENBA

GOLDEN STATE WARRIORS • NATIONAL BASKETBALL ASSOCIATION 1011 Broadway • Oakland, CA 94607-4019 510.986.2200 • 1-888-GSW-HOOP • warriors.com